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1. INTRODUCTION AND SUMMARY

The use of constant-volume balloons (CVB) has proven
a popular method of measuring atmospheric phenomena. Certéin
quéstions, regarding the proper application of such balloons
and the proper interpretation 3f resulting data’, have arisen.
Thus a neéd has developed for determining the true capabilities
of the CVB for aeronautical research. This study described in
this report was designed to satisfy this need.

The initial phase of the study involved a. literature
survey concerned with CVB. A description of this survey is

contained in Section 2.

Examination of the literature revealed the need for a
more rigorous mathematical treatment of the dynamics of CVB in
a fluctuating flow field. Accordingly a mathematical model
was developed which describes the response of the CVB to three-
dimensional periodic non-homogeneous flow. A description of

this model is provided in Section 3.

The mathematical model previously noted was incorporated
into a digital computer program. Section 4 provides a descrip-

tion of this program which is called BALLOON.

By means of BALLOON, over 84 numerical runs were con-
ducted with the NASA/MSFC UNIVAC 1108. These runs produced
both digital and graphical results as discussed in Section 5.
Because of the considerable bulk involved, most of the computer
plots are not included. They are available in a separate

document . [1].

Analysis of the numerical results obtained, combined
with a study of the work of other investigations has reéulted
in certain observations and conclusions. Section 6 contains
such observations and conclusions. Because of limitations in:
the scope of the investigation these conclusions are not con-~
sidered to be completely general with regard to CVB behavior.



At the same time they do provide some insight into the nature

 of the problem of properiy interpreting data collected by CVB's.

References cited and 1nc1uded in Section 7. " In
addition there are 16 appendices containing supplementary
» material. Of special signiflcance is a first-order pertur-




2. LITERATURE SURVEY

-The survey of literature consisted.of three separate
activities The first 1nvolved an 1nspect10n of ex1st1ng
balloon 11terature from the flles of the NASA Contractlng
Offlcer S Representatlve Dr. George H Flchtl representlhg
approx1mate1y 600 papers and reports Such an 1nspect10n re-
vealed 60 pertinent documents. The second act1v1ty 1nvolved'T
utilization of the computerized information retrieval system
at Redstone Scientific Information Center. The third activity
consisted of a personal review of journals pertaining to mete-
orology and atmospheric physics back to 1969. Because Dr.
Fichtl's files appeared to adequately cover all earlier years,
the personal review did not proceed back to any earlier journals.

The journals review included:

Journal of Meteorology

Journal of the Atmospheric Sciences

Journal of Applied Meteorology

Quarterly Journal of the Royal Meterological Society
Journal of Geophysical Research

Beitrage zUr Physik der freien Atmosphure

Journal of Japanese Meteorology Society

In the process of reviewing the literature some distinc-
tion had to be made between different types of balloons. Clearly
not all literature concerning balloons is pertinent to the study.
At the same time it was recognized that there exist a number
of types of balloons which are closely related or nearly equi-
valent to CVB's. These include tetroons, constant-altitude
balloons, constant level balloons, transondes, horizontal-
sounding balloons and certain types of super-pressure balloons.

A descfiption of each of these types 1is provided in Appendix A.
The decision was made to include in the survey literature
pertaining to all of these types of balloons so long as the
application of the balloon was consistent with the general

application of CVB's.



The results of the survey revealed four categories of
articles or reports. The first category is concerned with the
general theory, design, and operation of constant-volume.
balloons as discussed in subsection 2.1. The second category,
which is described in subsection 2.2, is concerned with the use
of constant-volume balloons to determine the mean wind veloéity.
The third category, which is of primary interest in the current
study, is similar to the second except that, in addition to the
mean wind velocity, some measurement of turbulent fluctuations.
is recorded. This category is presented in subsection 2.3.
Within the third category of literature, it is appropriate to
recognize two subcategories labeled 3-A and 3-B. 1In subcategory
3-A, the measurements of turbulent phenomena are presented in
their simplest form, involving variation with respect to spatial
position or time. In 3-B such data may be present, but in
addition, some spectral analysis or correlation of such data
is'provided. Clearly subcategory 3-B is of special interest
in the current investigation. The fourth category which is
presented in subsection 2.4, pertains to theoretical studies
of the motion of constant-volume balloons and related objects
immersed in a turbulent flow field, and also to the theory of
atmospheric turbulence.

2.1 Category 1 Literature - General Theory, Désign and
Operation of Constant-Volume Balloons

For the current investigation, literature describing
the general characteristics of constant-volume balloons (CVB)
was not of primary importance. At the same time such 1literature
was of some value in providing background material and in
developing an understanding of the various uses to which the
balloons have been put. More than seventy papers, reports, and
articles [2-75] were identified in this category. Some of
these also contained information pertinent to other categories
as discussed in other subsections. For the sake of brevity
the discussion of Category 1 literature which follows will be

limited to material of special significance.



The first CVB. investigation was reported 6ver'sixty—

- five years ago by Ley [2] and concerned the use of "balanced

' pilot balloons." The objectives of the study were to obtain
a better picture of: '

""(a) Periodic oscillations of stratum as apart from
variations due to altitude.

(b) Vertical currents or rising winds.

(c) Local eddies or other bhenomena.”
These objectives correspond quite closely to those of more recent
studies. Ley in a separate article [3] also reported on an
automatic valve fof maintaining such pilot balloons at a

constant altitude.

The first apparent use 0f CVB's in conjunction with
radio transmitters was reported by Akerman and Piccard [4]
shortly prior to World War II. During the fifteen years.follow-
ing the war a number of articles appeared describing various
methods of improving balloon performance [5-17] . The initial
works of Lally [14,16] and Angell [15] are included in this
group as are some of the works of Hopper [ 7,13,17] and Laby
13,171.

During the ten-year period from 1961 through 1970, more
than 40 category 1 articles were written [18-61]. One of the
most useful of these was a summary of the state-of-the-art in
1961 written by Angell [18]. The introduction of Mylar as a
material for the balloon skin was probably the most significant
development in CVB operations in this period. Both the Ghost
balloon experiment [26,27,29,30,31,36,39,43,50,53,57,58] and
the EOLE experiment [28,34,35,38,44,54,57] began operations
during this period.

Category 1 literature during the period 1971 - 1975
consisted of thirteen articles [62-74]. Several of these
were concerned with the EOLE experiment [62,66-68]. One of-
the most significant articles was concerned with tetrocn drag
coefficients over a range of Reynolds number from 104 to
6 x 105 (71]. Typical drag coefficient values were .73.



2.2 Category 2 Literature — The Use of the CVB's to Measure
the Horizontal Mean Wind

The literature survey uncovered 68 articles, reports,
and papers dealing with the use of CVB's to measure the hori-
zontal mean wind velocity. Of these, 23 also contained category
1 material, including the initial work of Ley, and have already
been noted [2,12,15,17,18,20,21,26,29,34,43,44,48,53,55,57—59,
63,68,69,72,74]. The remaining 42 papers [75—117] cover a
twenty-five year span (1950-1974) and describe various programs
in which CVB's were utilized to track the mean horizontal wind.
One of these papers [80] was not actually so much concerned
with measuring the mean wind as with utilizing such a wind to
send "balloon bombs" from Japan to the United States during
World War II. A number of investigations involved flights over
urban areas [82—84,92,101)105,109,114] while others dealt with-
the GHOST program [87,89—91,94—96,100,117] and still others
with the EOLE experiment [98,99,102,111,112,116,117]. Balloon
trajectories at various altitudes were analyzed including 500mb
[85], 200mb [116], 50mb [86], and 50km [108]. Clustering pheno-
mena were studied in some cases [85,97] while the relationship
between the dispersing of CVB's and turbulent diffusion in the
atmosphere was investigated in others [102,104,115]. A number
of studies were concerned with balloon trajectories in the
planetary boundary layer [97,103,109,110]; Still others were
directed toward measurements of rain clouds and thunderstorms
[93,113].

In essentially all the studies noted the basic assump-
tion was made that the mean motion of the balloon corresponded

to the mean motion of the atmospheré.

2.3 Category 3 Literature - The Use of CVB's to Measure
Turbulent Fluctuations

Category 3 literature can be divided into two groups,
as noted previously. All literature which contained some
measurement of turbulent fluctuations, either vertical or



horizontal, was considered Sub-Category 3-A if it did not provide
for some form of spectral analysis or correlation of the fluc-~
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contained both measurement of fluctuations and spectral analysis
or correlation of the data.

2.3.1 Sub- Category 3-A L1terature - Without Spectral Analysis of
Correlation

Twenty-two different studies provided basic méasurements
of turbulent fluctuations [2,18,20,25,74,75,83,92,1082110,111,
112,115,118-126]. The majority of these stﬁdies were concerned
with vertical fluctuation {2,18,20,25,74,83,92,108,110,115,
120,122-126]1. The data were generally presented in the form
of a plot of altitude, temperature or pressure versus time.

The period of oscillation were generally relatively short, being

measured in minutes.

Ten studies provided measurement of horizontal fluctua-
tions [75,110-112,118-121,124,125]1. As with vertical fluctuation
the data were generally presented in the form of a plot of
displacement versus time. Two separate groups could be identi-
fied. The first of these was concerned with large-scale fluc-
tuation with periods of oscillation measured in hours or even
days [111,112] while the second group dealt with small~-scale
fluctuations with periods of oscillation measured in minutes
{110,118-121].

Sub-Category 3-A literature contains a wealth‘qf_information
but time and manpower limitations precluded any attempt to
carry out any detailed analysis of the measured data.

2.3.2 Sub- ~Category 3-B Literature - With Spectral Ana1y81s or
Correlation

The most significant group of literature bearing on the
current study consisted of twenty-one articles which provide
both turbulence measurements and spectral analysis or correla-
tions.of measured data [68,72,78,84,127-143]. It was appropriate



to identify two groups within Sub-Category 3-B. In the

first of these, the authors generally provided turbulence measure-
ments, based on tracking the CVB, and some analysis of the
resulting data [68,72,78,84,127,129,130,135,136,138-141,143}].
These types of analyses produced Lagrangian or quasi-Lagrangian
representations of turbulence. It is important to note that

a wide range of frequencies and wave numbers were covered in
these studies. A number of the studies were primarily concerned
with low frequency oscillations (.001 to 0.1 cycles/hr) of

the horizontal winds [68,130,139,140,143]. The remaining dealt
with intermediate to high frequency oscillations (0.1 to 100
cycles/hour) of the vertical winds [72,78,84,127,129,135,136,
138]. 1In several of these cases the natural frequency of
oscillation was detected [72,84,129,136]. One study utilizing
neutrally buoyant floats for measuring vertical velocity
fluctuations in the ocean (in the spectral range from 10_2-to 1
cycle/hour), also detected the natural frequency of oscillation

[141].

The seven remaining Sub-Category 3-B papers [128,131-134,
137,142] were especially pertinent to the current investigation
because in addition to turbulence measurements and analysis
based on the motion of CVB's they also provide corresponding
data and analysis based on measurements taken at a stationary
point. Thus both Lagrangian (or quasi-Lagrangian) and Eulerian

descriptions of turbulence were available for comparison.

The first of these studies is especially noteworthy
because of its completeness. Gifford [128] calculated the
vertical velocity energy spectra over the range from 3 to 200
cycles/hour at a height of 300 feet based on measurement, by
fixed anemometers, CVB's and gust equipment mounted aboard an
airplane. He demonstrated that in terms of the frequency,
(corresponding to the spectral maxima), the data could be

correlated by the relation

w=9, +k i, | (2-1)



_

where

w = Eulerian frequency (measured by the fixed anemometer)
QL = (quasi) Lagrangian frequency (measured by the CVB)
k = wave number (measured by the airplane)

G; = mean wind velocity,

Angell and Pack [131], in a study of low-level CVB

‘fllghts from Wallops Island, obtained measurements of vertical,

longltudlnal, and transverse fluctuations. Based on such measure-
ments they calculated values of transverse velocity variance

éﬁd transverse turbulence intensity at altitudes from 2500-—

3000 feet. They provided a comparison of such values with
Eulerian values (obtained at heights from 6 to 300 feet) and

with other Lagrangian values (obtained at altitudes from 1000

to 3000 feet). In general the values of Lagrangian variance

and intensity obtained by Angell and Pack were less than the

. corresponding Eulerian values and were also less than the other

Lagrangian values. Because the mean wind velocities were not

‘provided and because of differences in height at which the

various measurements were obtained, it is difficult to draw

quantitative conclusions from these comparisons.

Angell [132] in another study carried out an analysis
of the trajectories of CVB's launched from Cardington at
altitudes ranging from 1200 to 4200 feet. Based on measurement
of vertical fluctuations, vertical velocity spectra were
derived extending from .01 to 1.0 cycles/minute. The spectral
peaks of these quasi-Lagrangian spectra were then compared

with corresponding peaks from Eulerian spectra, derived from

measurements by wind vanes attached to a barrage-balloon cable
at heights ranging from 600 to 3500 feet. The ratio, B, of the
frequency for the Eulerian spectral peak to the frequency for
the Lagrangian spectral peak was computed and tabulated. Values.
of 8 ranged from 1.1 to 8.5. An approximate correlation of B

with turbulence intensity was developed.



Kéo'and_Bullock [133] performed a comparison of
Lagrangian and Euierian cofrelations and energy spectra of
geostrophic velobities.' The frequency range for the spectra
_extended'from . 001 to-.07.cyc1és/hour. _Thé”curves for the -
'Eulerian'éuto correlation cgefficients of both horiantall
velocity componénts_reSembled.their Lagrangian counterparts.
Hnt.displayed'larger integral time scales. The Eulerian Qelo-'
city spectra'élso resembled the Lagrangian but were shifted
toward  lower frequency. The value of B based on the ratio of
the integral time scale was 0.53.

In a separéte paper Kao [134] computed and analyzed the
Eulerian and Lagrangian autocorrelations and energy spectra of
large-scale turbulent motion at the 300 mb level. The results
were similar to thoée presented in the preceding study. The
frequency range was the same and the same resemblance of the
Eulerian autocorrelation curves and spectra to their Lagrangian
counterparts was agéin observed. The value of B was found to
be 0.33. It is important to note that the Lagrangian values
were based on data collected by Angell [15] from CVB flights
from Japanito the United States while the Eulerian values were
based on data collected by Kao over Salt Lake City. The mean

wind speeds were not equal in the two experiments.

Angell, Pack, Hoecker, and Delver [137] performed a com-
parisoh of Lagrangian and Eulerian time-scales based on CVB flights
past a 460 meter tower in Nevada equipped with a bidirection wind
vane. The range of frequencies extended from ~.0003 to .01 cycles/
sec. Based on the frequencies corresponding to the spectral peaks,
values of B from 1.5 to 4.7 were obtained. A limited correla-
tion of B as a function of turbulence intensity was developed.

In a closely related study, Angell.[142],calcu1ated the
Lagrangian and Eulerian time scales based on CVB flights past
a 460-meter televisibn tower near Oklahoma City. The time scales
were based on the spectral peaks of composite'Lagrangian aﬂd
Eulerian spectra with a frequency range from .0001 to 1.0

10



cycles/second. Values of B ranged from 2.4 to 13. Anéell
suggested that the presence of an urban area might reduce the
Lagrangién time Scale, thus causing larger Qalueé of B. Corre-
lation of B with turbulence intensity was demonstrated to a
limited degree.

2.4 Category 4 Literature - Theoretical Studies of CVB's
and Other Bodies Immersed in a Turbulent Flow Field

Many of articles, papers, and reports already described
also provided some theoretical treatment regarding the behavior
of CVB's [2,20,22,46,58,65,72,72,97-99,102,103,119,122,124,
126,127,136]. Some of these dealt with predicting the expansion
of the balloon due to pressure differences and predicting the
equilibrium altitude [58,65,72]. Others dealt with predicting .
the natural frequency of vertical oscillation for the CVB and/or
an air parcel [20,58,72,127,136]. Still others were concerned
‘with the response of the CVB to oscillations in the flow
field [22,46,97,126]). Two papers dealt with the numerical
simulation of the dispersion of CVB [98,99], while two others
were concerned with relating balloon dispersion to atmospheric
diffﬁsion [102,119]). The behavior of CVB's in the vicinity
of mountains was the subject of two other studies [122,124].

Much of the remaining Category 4 literature was concern-
ed with the behavior of a body immersed in a fluid [144-167].
One of thé earliest treatments of this problem was that by
Bassett [144], who took into account transient viscous effects.
For the case of low Reynolds numbers, corresponding to small
particles, a sizeable number of studies have been performed
[145-154]. These studies generally involved particle densities
which were much greater than the fluid density and thus differed
significantly from the CVB problem. The rigor with which the
governing equations were derived, however, proved useful in
establishing the governing equations for CVB motion. Two o
other papers {155,156] dealt with the behavior of bubbles in

11



fluids,'when the density of the bubble is much less than the
density of the fluid. The basic question of the natural vertical

- oscillation in a stratfied fluid has been addressed in a number
of studies_[20,58;72,127,136] as previously noted.. In addition
to these, the original work of Brunt [157],for vertical
oéci;lations of an air parcel in the atmosphere, and the work

of Larsen [158],for a neutrally buoyant sphere oscillating in

a stratified fluid, are worthy of note.

Clearly the most relevant studies involving immersed
bodies were those dealing with balloon motion [159-167]1. Two
papers.[161,163] were especially pertinent. The paper by Hirsch
and Booker [161] dealt with the response of superpressure
balloons to vertical air motions. 1In developing the governing
equation for the balloon response, however, the authors
apparently neglected apparent mass and pressure gradient
effects as well as the Bassett terms. In addition the equations
describing the motions of the air and the balloon, as presented
in the paper, appear erroneous. For these reasons the resulting

balloon trajectories are of questionable value.

‘The paper by Hanna and Hoecker [163] was concerned with
the response of constant-density balloons to sinusoidal varia-
tions of vertical wind speeds. The equation governing the
balloon motion was derived with more rigor than noted above, but
several important assumptions and/or simplifications were made
which were not clearly stated. First, the follow-the-fluid-
particle total derivative was assumed identical to the follow-
the-balloon total derivative. Second the Bassett term was
neglected. The first assumption is valid because the authors
considered only a periodic velocity field, which was spatially
homogeneous. The second simplification appears acceptable for
large Reynolds numbers. The authors presented dimensionless
plbts for calculating phase lag and amplitude response as a
function of the properties of the atmosphere and the balloon.

12



It is important to note that the authors did not predict any

.frequency"shift of the balloon motion with respect to the air

motion. -

In addition to literature dealing with thé behavior of
immersed bodies,'certain other Category 4 literature was identi—
fied. This included certain studies dealing with CVB trajectories
[168-170]. Also, a number of importént references dealing with

atmospheric turbulence [171-180]. Especially useful in this

regard were the works of Lumley and Panoféky [175] and Slade [176].

13



3. ANALYTICAL DEVELOPMENT

In order to gain a better understandlng of the behav1or
of a constant-volume balloon immersed in a flow fleld a mathe—
matical model has been developed based on the approprlate'
governlng equations. The equations describing the balloon
motion and the fluld ve10c1ty f1e1d are presented in subsection
3.1. These equatlons are presented in both dimensional and
dimensionless form. By means of dimensional analysis, as des-
cribed in subsection 3.2 certain important dimensionless groups
can be identified, which are useful in presenting results with
more general applicatidn.
‘ As an alternative method of treating the problem, a
first—ofder perturbation analysis of a perfectly responding CVB

has been performed as discussed in subsection 3.3.

3.1 Governing Equations for Balloon Motion

The governing equations for the motion of a balloon
submerged in a turbulent flow field consist of the equations
for the conservation of momentum of the balloon coupled with
the equations fer conservation of momentum of the fluid.

3.1.1 Conservation of Momentum Equations for the Balloon

The conservation of momentum equations were originally
derived for small Reynolds numbers (>0.1) as discussed in
Appendix B. Based en the derivation provided in that appendix,
but without the assumption of low Reynolds numbers, the conser-
vation of momentum equations for a balloon can be written as

vl

dv, d(v,-u,) ; 2
1 i i7 _ 1 - I - D _m 3p
mgr— tm, —gg =3 ° (U -vdlu-v[C o ax,
t d(v -uy )
——————————dt'
3 - .2 —_— __at' -
+ mgé., -5 pD” Vv —
i3 2 o Zijfq;
_ {3-1)
If viscous stresses in the fluid are neglected,
Du,
_a_L = pg(s _p.__l_
9ax i3 Dt . (3-2)
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A combination of Equations (3-1) and (3-2) yields '

dv; d(vi - ui)_

L R T

: : - : Du

. 2 i
I -+ -»>- D m

=z P (uy - Vi)lu - V,CD 4 5 (P83 - ¢ pp)

t d(vy-uy)

' 3 2‘/ J{ —T—Ef#—— dt’
"+ mg8., - 5 PD VTV B ——
%3 7 2 o V T -t
' : o (3-3)
Rearfangement yields
dvi
(m+m) g8
2 ' Du,
=5 0 (u;-vy) |u-v|Ch =p— + (m; +35) g5
aui
+ m, (vj-uj) 5;} - (1 - p/o) mg 613
s 2 d(vi-ug)  ggo
-5 oD Vv at " (3-4)
o  —————

v t ~ t'

Division by Vo A2 yields
Yo A~ ,
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m

ﬂ_+_3-) d.(v;/A)
oV oV/ d (At/D)
-/, v > > D>
lefl W) E v %
2 o\A "% Jla-x |7
‘+(& . m ) D(ui/A) . E Y.J. _uj_ a(ui/A)-
oV 2,/ D@A&/D) "oV\A T4 me/D_)
- (A-pfo) B 8D
oV 2 i3
A
d(v./A - u,/A)
At/D i
3 = 1 -
- g_ge_ \/% / d(AT/D) d(At'/D)
o
o ‘/ At/D - At'/D (3-5)
The following felations hold:
m = gV (3-86)
1
m 50 V
a 2 (3-7)
and
1 3
V = '6— D (3‘8)
With these identities Equation (3-5) can be written
~ dv ~ ~ Da 3
+ 0 i_3 (~ _ 2 5 R 5 Lo
A+8) =7 @G- 1a-¥ D+ '§+°)§E— t3 ST Dy
%3
I d(v; - u;) s
(1-3) g8 -95J§f =
i3 LR \/ t -t
(3-9)
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where

5 = p/o | | . (3-10)

¥ = vy/A | (3-11)

i, = u,/A - , . (3-12)
to= At/D _ _ - .. (3-13)
'iJ_-'xJ/p'- | o | f'”: (3-14)
. . | . I

€ = gDh/A : . (3-15)

3 = v/(AD) | : - (3-16)

Division by (2—%Jl)yie1ds

2453 J i 245
3 d (v,-tu,) _
t 1~ i 4%
__18p ,/g_ dt’ _
z+3 " Jo vi-¢t (3-17)

Now the drag coefficient CD can be approximated by the relation
= 24 » .
o= % * % (Re < 17 (3-18)
where

Cpe = 5 (3-19)
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Re = ‘Iu—Vl_D
v p
> >
= Ji-¥ . L
5 | 20

A .combination of Equations (3-17), (3-18) and (3-20) yiéi&s .

LW 10T WO VS SR
at 2\2+5 3 -3 17V -V
- > > : - Di.
() - rE s ()
2+9p 2+p/ Dt
b Ve, 5y o2 20
) KA T D 813
2+7 o% 2+ 5 i
- dv, - 4,) -
- 18 p )’%“ jf th .
2+5p o - t!
X ~ 1 - -
= 36 —L— ) (@ -9)+2 2 i, - ¥.)| @ ~l
(2+5) i i 2 2+ 5 CD!Z,(l 1)u v

t -t (3-21)

Further development of the dimensionless form of the equation
is provided in Appendix C.
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3.1.2 = Mathematical Model for the Flow Field

The equations governing the motion of fiuid are commonly
referred to as the Navier-Stokes equations. Alfhough numerical
solutioné offthese equations are possible, such a procedure is
beyond the scope of the current study. Accordingly a simple

mathematical model was developed representing a periodic three -
dimensional flow field which conserves mass, as described in
"Appendix D. The final dimensional form of the model is:

u;, = uy Gil + A sin (z ~ wt + ei) (3-22)
where

=k (% + X5 + X3) (3-23)

81 = 0

92 = 21\'/3

63 =-21/3 ' (3-24)

It is important to note that the flow field model is three-dimensional
and does contain a mean translational velocity.* To increase

the generality of the model it can be cast in dimensionless

form as described in Appendix E. 1In such form the model can

be written:

4 = ﬁl 851 + sin (z - 3t + 6,) (3-25)
where

i = u,/A (3-26)

i, = d,/a N (3-27)

* These two features of the flow field model distinguish it from
the model of Hanna and Hoecker ({163] , who, as already noted
-in Section 2.4, employed a model which contained no mean trans-
lational motion and was spatially homogeneous.
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4

sionless groups.

-.x/D

wD/A

= At/D

written

Ly

Lg

A comparison of Equations (3-35) and (3-38) reveals

Dimensional Analysis

(3-28)
(3-29)
(3-30)
(3-31)

(3-32)

Inspection of Equatioﬁ (3-21) reveals certain dimen-

as:

N
20 + p

9
20 + p

12 v
AD

CDl

(g(R-YZDz
g p)
A T0

6 ‘/v/(ADw~~

Wi N

Lg = 3L577

As shown in Appendix C these groups can be

(3-33)
(3-34)
(3-35)
(3-36)

(3-37)

(3-38)

(3-39)

For a CVB the balloon density is essentially equal to the

atmospheric density.

Thus,
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Ly ~ }/3 ' (3--10)

L, <~ -1/4 : (3-41) -
For simplicity the balloon is assumed to have a spherical
shape. For this case '

Cpg =1/ - |  (3-42)
and

L, 1/, (3-43)

- Thus the six dimensionless groups are reduced to two: L3 and
L5.
mated as:

Furthermore, the dimensionless group, L3, can be approxi-

12v
L. - —°%
3 AD (3-44)

where Vo = kinematic viscosity at the equilibrium altitude.

This parameter is clearly the reciprocal of a type of Reynolds
number as shown in Appendix F. It is important to note that the
two dimensionless groups, 12 vo/(AD) and % g (g/R - Y)Dz/(AzTO)

are essentially constant for any given balloon problem and appear
sufficient (to first-order accuracy) for characterizing the balloon
-motion. At the same time, the six original dimensionless groups
~are not truly constants and the numerical solution of Equations
(3~21) described in Section 4, has allowed for the actual variation
of these groups to achieve higher-order accuracy.

Examination of Equation (3-25) indicates that thg
flow field model contains fiye dimensionless parameters: El,
R,'ii, w, and €. Two of these, ii and T, represent the balloon
coordinates in space and time as obtained from the solution to the
gquation governing the balloon motion, and thus these two parameters
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The trﬁe'significance of Equation (3-45) can best be understood
in terms of certain examples as presented in Appendix H. The
example based on Taylbr's Hypothesis is especialiy noteworthy. .
For this case the relation between the two spectra becomes

o

.lbL(TAYLOR)(Q’ X3q) = 8(R) f Or(TAYLOR) (K; Xg45)dK  (3-48)

: T o .
According to Equation (3-48) the quasi-Lagrangian power spectrum
is simply a spike at =0, and is thus independent of the shape
of the Eulerian space-time power spectrum. It therefore appears
according to the first-order perturbation analysis, that the
quasi-Lagrangian power spectrum, obtained from observing the
balloon motion, could not be used to describe the Eulerian

spectrum, if Taylor's Hypothesis holds.

22



b % X

4. COMPUTER PROGRAM BALLOON

" The equations presented in Section 2 were incorpérated.__
into a digital computer program entitled "BALLOON". Essentially,
the program utilizes a fourth-order Runge-Kutta technique to
integrate the differential equations governing the balloon
motion. }The'program consists of a driver routine (MAIN); 9
subroutines (GEOMET,'INTEG, ACCEL, PROPTY, BUOYNT, APARNT, DRAG,
BASSET, and POTFLU); and 2 functions (DVAL and MREF). The

‘basic orginization of BALLOON is indicated in Figure 4-1.

, A copy of the source program is contained in Appendix K.
A description of each subroutine or function is contained in
Table 4-1. .In subsection 4.1 an explanation of all input para-
meters is provided including the input format. A description
of the output is contained in subsection 4.2.

4.1 Inputs

All inputs to the program are read in through MAIN.
These inputs can be divided into two segments or blocks. To
facilitate explaining the sequence and format for each input
item, the actual FORTRAN statements (both READ and FORMAT)
associated with the inputs are provided as part of the discussiol

which follows.

4.1.1 Block #1 Inputs

The first set of inputs consists of data setting up
certain initial parameters. The form of the input is as follows:

READ (5,7002) NNN
READ (5,7001) BCDX,BCDY1l,BCDY2,BCDY3, FLDY1,FLDY2,FLDY3
READ (5,100) G,X,K,THETA,UB,V
READ (5,100) A,¢MEGA,SIGMA,D,MUREF,TEMREF,T,TLIM,DELTAT,
*TEMPO, PO, TEMLAP,R,X30
100 FQRMAT (8E10,3)
7001 F@RMAT (12A6,8X)
7002 F@QRMAT (12)
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MAIN

GEOMET INTEG
ACCEL
PROPTY BUOYNT APPRNT DRAG BASSET
MREF POTFLU DVAL
SA10925
Figure 4-1. Organization of Balloon Program
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Name

ACCEL

DRAG
GEOMET

INTEG

MAIN

MREF

POTFLU

PROPTY

Table 4-~1

Purpose

Calculates acceleration of
balloon

NaTArnrTlataon Farnaano A

‘vailluirates 10rces aue bU

apparent mass and pressure
gradients in the fluid

Calculates Bassett force

Calculates force due to
buoyancy

Calculates correction to
convection term due to
difference in balloon and
fluid velocities

Calculates drag

Calculates ti
e by

ilme
dent geoim C

i

Performs numerical
integration

Serves as driver and

provides for input and
output

Calculates viscosity as
a function of temperature

Calculates flow field
derivatives

Calculates temperature

and density as a function
of altitude
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Called by

INTEG

APPRNT
BASSET

ACCEL

MAIN

MAIN

PROPTY

APPRNT

ACCEL

Summary of Subroutines and Functions in BALLOON

Calls Up

APPRNT
BASSET
BUOYNT
DRAG

PROPTY

TUAT.
LIV £l

POTFLU

DVAL

ACCEL

GEOMET
INTEG

MREF



Table 4-2 provides a definition of each input item.  Notice should
be taken than the table is arranged in the same order as the items.

are read.

4.1.2 . Block #2 Inputs

The second set of déta occur in the following form:
READ (5,101)XD(2),XD(5),BCDX(11),BCDX(12),T,TLIM,DELTAT, IDT, IDS
101 F@RMAT (2E10.3,10X,2A46,8X,3F5.0,215) '

The data in Block #2 are somewhat redundant offquck #1 data.

This redundancy results from certain modifications to the program
to permit dimensionless results and to provide for'multiple cases
to be run in sequence. The meaning of each Block #2 input is
provided'in Table 4-3. As before, the items in the table are list-
ed in the same order as they are read into the program. One '
set of these inputs must be provided for each case to be ruh

in sequence.

4.2 Outputs

All outputs to the program occur in MAIN. These outpufs
can be divided into 4 blocks. As with the description of in-
puts, to aid in explaining the sequence and format of each
output item, the actual FORTRAN statements (both WRITE and
FORMAT), associated with the outputs are provided as part of

the discussion which follows.

4.2.1 Block #1 Outputs

The fifst output set occurs in the following forﬁt

WRITE(6,9004) A,B,C
9004 F@RMAT(///10X,1P3E12.4)

The variables A, B, C, refer to the amplitudes of the Uy, Uy
and Ug velocity components. The variable A is read in,'but'
B and C are computed. Sample values of this output is included

in Appendix L.
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Variable

NNN

" BCDX

BCDY1
BCDY2
BCDY3
FLDY1
FLDY2
FLDY3

G
X
K
THETA

UB
\

A
OMEGA
SIGMA
D
MUREF
TEMREF
T

TLIM
DELTAT
TEMPO
PO
TEMLAP
R

X30

 Table 4-2

Definitions of Block #1 Inputs

Meaning

The number of different cases to be run in sequence ’
alphanumeric label for abscissa of all plots

_alphanumeric label for ordinate of first plot

(normally xi—component of velocity)

alphanumeric label for ordinate of second plbf
(normally x2—component of velocity)

alphanumeric label for ordinate of third plot
(normally x3—component of velocity)

" alphanumeric label for ordinate of fourth plot

(normally xl-coordlnate of balloon)

alphanumeric label for ordinate of fifth plot
(normally x2—coordinate of balloon)

alphanumeric label for ordinate of sixth plot
(normally x3—coordinate of balioon)

gravitational acceleration vector
position vector for initial position
wave number vector for the fluid

phase angles for the components of the fluid
velocity model

initial fluid velocity vector

initial balloon velocity vector

fluid wave amplitude for x4 direction
Eulerian frequency for the fluid
balloon density

balloon diameter

reference dynamic viscosity coefficient
reference temperature

initial time of balloon fluid

final time of balloon flight

time step for numerical integration
temperature at altitude Xa0

pressure at altitude Xaq

temperature lapse rate

gas constant

initial balloon altitude
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Variable

XD/ 2)
LI\ & )

XD(5)

BCDX(11) |
BCDX(12) |

T
TLIM
DELTAT

IDT

IDS

Table 4-3

Defihitibns of Block #2 Inputs

dimensionless frequency, &

alphahumeric label to permit identifying each
run by a '"test" caption

initial time of balloon flight

2411 L14al L L o4 DA L1000 114 512 L

final time of balloon flight
time step for numerical integration

number of integration time steps between output
data generations

factor for increasing TLIM (final time = IDS*TLIM)
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4.2.2 Block #2 Outputs

The second set of output provides a label for each case
and provides a list of most inputs in the following form:
WRITE(6.0915) BCDX(11), BCDX(12) (XD(L2),L2=1.5)
WRITE(6, INPUT)

9015 FPRMAT(1H1,25X,'TEST CASE'2A6//' DIMENSIPNLESS GRQUPS' // N7='1PE1
.12.4/' N8='El12.4/ ' N9='E12.4/' N10='E12.4/' N11='E12.4)

NAMELIST/IMPUT/G,X,K,THETA,UB,V,A,PMEGA,SIGMA,D,MUREF,, TEMREF,T,
*TLIM,DELTAT,TEMPO,PO,TEMLAP,R,X$0

The definitiop of all of these items are provided in Tables 4.2
and 4.3. A sample set of this output is included in Appendix L.

4.2.3  Block #3 Outputs

The form of this output is as follows:

WRITE(6,9002) _
WRITE(6,9003) ((WRA(I,J),J=1,11),I=1,50)
WRITE(6,9008) -
WRITE(6,9009) ((WRB(I,J),J=1,6),I=1,50)
WRITE(6,9006)

WRITE(6,9007) ((WRC(I,J),J=1,17,I=1,50)

9002 FORMAT('1l TIME SCALED TIME SCALED ATM@SPHERIC WIND
1SCALED BALL@QYN VEL@CITIES VEL@CITY RATIQS,//)

9003 F@RMAT(1X,OPF8.2,1P10E11.3)

9008 F@RMAT('l TIME SCALED TIME X Y DZ
1'//)

9009 FPRMAT(1X.OPFS8.2,1PS5E11.3)

9006 FPRMAT('1l TIME SCALED TIME FDRAG/ FBUQY
1 FAP1/FBASS FAP2'//)

9007 F@PRMAT(1X,0PF8.2,1P10E11.3/20X,1P6E11.3)

Basic data describing the computed wind and balloon motion are
stored in the fields WRA, WRB, and WRC. The WRA field provides
a tabulation of wind and balloon velocity as a function of time.
The WRB field containé the balloon coordinates and the Reynolds
number as a function of time. The WRC field contains a tabu-
lation of the various forces acting on the balloon as a function
of time. Samp}e values of block #3 data are included in

Appendix L.
4.2.4 Block #4 Outputs

This output set consisté‘of calls to the NASA/MSFC
UNIVAC 1108 plotting routines as follows:
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YB = 8.8

YT = 11.2 N

CALL QUIK3L(-1,XL,XR,YB,YT,1H+,BCDX,BCDY1,-IDX,PT,PY1l)

CALL QUIK3L(C,XL,XR,YB,YT, IHO,BCDX,BCDY1l,-IDX,PT,PZ1) .

YB = -1.5 '

YT = 1.5 - ' : :
CALL QUIK3L(-1,XL,XR,YB,YT, 1H+, BCDX,BCDY2, ~-1IDX, PT,PY2)
CALL QUIK3L(0,XL,XR,YB,YT,1HO,BCDX, BCDY2,~-1IDX,PT,PZ2)
CALL QUIK3L(-1,XL,XR,YB,YT,1H+,6BCDX,BCDY3,~IDX, PT,PY3)
CALL QUIK3L(O0,XL,XR,YB,YT,1HO,BCDX,BCDY3,-1IDX,PT,PZ3)
CALL QUIK3V(-1,1HO,BCDX,FLDY2,-IDX,PT,PY)

CALL QUIK3V(-1,1HO,BCDX,FLDY3, -IDX,PT,PZ)

The fluid velocity components are stored in the PY1l, PY2 and
PY3 fields while the balloon velocity components are stored in
the PZ1, PZ2, and PZ3 fields. The lateral and vertical co-
ordinates of the balloon position are stored in the PY and PZ
fields respectively. The preceding parameters are plotted as
a function of time which is stored in the PT field. Examples
of the plots generated by this block of output data are found

in Section 5.
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5. NUMERICAL RESULTS

The computer program, BALLOON, has been used to numeri~
cally'sol?e the equationé governing the motion of the balloon in
a pefiodic,'three—dimensional flow field. The numerical results
can_bé.gfouped in two categories. The first category contains the
resulfs.of'teSt runs to validate the numerical modél incorporated
into the program. This category is presented in.sﬁbsection 5.1.
The seCdnd category represents the results of a series of runs, which
are designed to provide general insight into the balloon response to
the fiow fieldf This category is described in subsection 5.2

Based on these numerical results certain observations con-'
cerning the behavior of constant-volume balloons have been made.

These observations are presented in subsection 5.3

5.1 Test Case Results

Several types of test runs were carried out. The first
were designed to provide a means of initially validating the
model for certain simple conditions for which first-order theo-
retical solutions exist. These runs are described in subsection
5.1.1. The second type of test run was designed to verify the
generality of the dimensionless form of the numerical solution.
The results of these runs are presented in subsection 5.1.2.

A number of other test cases were conducted to determine the
effect of changing or omitting certain features in the program.
The results of these tests are discussed in subsection 5.1.3.

5.1.1 Initial Test Cases

A series of four test cases were carried out which were
simple enough to permit comparison with first-order theory.
The simplifications employed in these four cases are summarized
in Table 5-1. For each of these cases, as discussed in Appendix M,
the period of oscillation based on first-order theory agreed
closely with the results of the numerical solution. One
additional test case (#5) was conducted to ensure that the
simplification involving an isothermal atmosphere was not a
special case. The period of oscillation for this test run,
according to first-order theory, and the period obtained from

the numerical solution were nearly identical.
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Table 5-1

Summary of Simplifications for Initial Test Runs

Simplifications

Test Fluid
Run Drag Apparent Bassett Acceleration
# Force Mass Force Force Atmosphere

1 zZero zero zZero zero isothermal

2 linear zero zZero zZero isothermal

3 zZero 4 balloon =zero zZero isothermal

mass
4 _ zero zero linear zero isothermal
5 zZero Zero zero zero nonisothermal
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5.1.2 Dimensionless Test Cases

In order to verify the dimensionless formulation of the
governing equatioﬁs and the resulting dimensionless solution,
t&o test cases (#6 and #7) were conducted with the program
BALLOON. The dimensional input values for the two cases are
presented in Table 5-2. While the dimensional inputs are
clearly different for the two cases, the values of the five
dimensionless parameters developed in Section 3.3 are the same
for both’'cases. Values of the dimensionléss groupé are pre-

sented in Table 5-3.

In terms“of dimensionless time, space, and velocity the.
differences in the numerical solutions for the two cases were
less than 1%. The dimensionless plots of the vertical compon-
ents of the balloon and wind velocities versus time for these
cases are presented in Figure N-1 of Appendix N. . Thus the
validity of the dimensionless formulation was confirmed.

5.1.3 Other Test Cases

Because of the fact that evaluation of the Bassett term
represents 90% of the computation time in BALLOON, a test run
(test case #8) was conducted, in which the Bassett term was
set to zero with the same inputs as given for test case #6.

The results are presented in Figure N-2 of Appendix N. As
indicated in the figure, the absence of the Bassett term caused
an 11% reduction in the period of the balloon motion. Although
such a reduction is considered significant, the general shape
of the plots of both balloon and wind vertical velocity compon-
ents closely resemble those shown in Figure N-1. Furthermore,
the Reynolds number associated with this test case was 480
which is considerably above the Stokes flow regime in which the
Bassett term is rigorously applicable. For these reasons,
computation of the Bassett term was omitted in subsequent runs

unless the Reynolds number was al.
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Table:5-2

Dimensional Input Values for Test Cases #6 and #7 _ ra

V#fiable -Case:#6 Case #7 : ggizg

T, 218 300 o '5x_

R 2.870224x10°  2.870224x10° em?/sec? K
v _O;;- | o . %k/cm

g . 980.6 980.6 cm/sec?
u 1.40646x10"%  1.84540x107% g/cm sec
w 3.20036x10"2  2.72746xi0”2 rad/sec
A 15.44 19.15 cm/sec
D 12.0616 17.5562. cm

k 2.072693x10™3  1.42399x1073 em™1

i, . 45.7555 56.75966 cm/sec

o 3.61494x10"%  2.626856x107% gm/cm®
o, 3.61494x10"%  2.626856x107% gm/cm’



Table 5-3

. Values of Dimensionless Parameters for
' Test Cases #6 and #7

Variable _ Definition Value

L 125, 2.5 x 10

2
3 - AD .

2 g (g/RvD® glhs 04
° L3 A% ‘ T
B | Couy /A - R ST

K kD 2.5 x 1072

2

2

wD . o
—a 2.5 -x 10
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In the setup of test cases #6 and #7, the initial balloon
velocity was set equal to the mean wind velocity and, in
the flow field model, the phase angle 0, was set to 0, with 09
set to 2“/3’ and 63 set to *2ﬂ/3. In examining the results
obtained, the question arose as to whether or not a change in
the value of thé phase angle would have a significant effect on
performance of the balloon. This question is equivalent to |
the question of the influence of the initial phase relation
between balloon and wind velocity on the periodic solution.

To resolve this issue, three additional test cases
(#9, 10, énd 11) were conducted with phase angles as indicated
in Table 5-4. All other input variables in test cases #9, 10
and 11 were the same as case #6. The results obtained are
presented in Figures N-3 through N-5 of Appendix N. Examina-
tion of these figures reveals that for each different phase
angle immediately following time zero there is a different
transient buildup for the balloon motion. Subsequent to the
transient buildup, a periodic pattern occurs. Comparison of
Figures N-1, N-3, N-4, and N-5 indicated that the periodic
motion of the balloon relative to the wind, following the
transient buildup, is essentially independent of the phase

angle.

5.2 Results of Numerical Experiments

Based on the results of test cases #1 - #11, the computer
program BALLOON was considered acceptable for conducting a
series of numerical experiments. To provide maximum results
with a minimum number of computer runs the éntire experiment
was set up in dimensionless form. The experiment was carried

out in two phases as described in subsections 5.2.1 and 5.2.2

which follow.

5.2.1 Phase I Numerical Experiments

Considerable effort was devoted to devising a series
of dimensionless runs involving variation of the primary
dimensionless groups discussed in Section 3.2. With five inde-
pendent parameters a complete investigation would entail a
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Table 5-4

Phase Angles Used in Test Cases #6 - #11

Test Case #

10

11

1

0

ﬂ/z

3'rr/2

37
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21r/3
2'rr/3
ﬁ/£+2ﬂ/3

m +21T/3

31r/2+27r/3

—2n/3
—211/3
—2w/3
1r/2—21r/3
m —21T/3
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very large number of runs. Accordingly in Phase I the decision
was made to hold the'variables LS’ L5 and ﬁl constant with the
values given in ‘Table 5-5 while systematically varying k and @
over the ranges indiéatéd in the sdme table. The individual
runs were visualized as elements in a matrix, as shown in
Figure 5-1. The values of k and & for each run were.éssigned
according to the position of the element in the matrix. The
matrix was designed such that along the main diagonal

on

w =Kk 1

which satisfies Taylor's Hypothesis.

The dimensionless form of the input variables corres-
pond to a large number of different physical situations. In
this form, however, i% is difficult to visualize the type of
physical situation represented. Actually in Phase I the
dimensionless parameters were computed from '"typical'" dimensional
values of the physical parameters. The dimensional values used
are presented in Table 5-6. It is important to note that in
certain portions of the report dimensional results are presented
in lieu of dimensionless values. In these cases the correspon-

ding dimensional inputs are those presented in Table 5-6.

5.2.1.1 Phase I - Original 16 Runs

For the sixteen runs shown in Figure 5-1 a quantita-
tive analysis of the numerical results is presented in Appendix O.
A qualitative view of the results of these experiments is pro-
vided by means of Figures 5-2 through 5-6. These figures depict
the transverse and vertical position of the balloon and the
velocities in all thfee directions as functions of time for
each test case within the matrix. In each figure, the sixteen
plots are arranged in order of test case number so as to corres-
pond to the elements in the test case matrix. Note that the
scales differ from plot to plot within these figures. The
scales Were selected to provide a maximum of 10 complete
oscillations of the forcing function. Also note that the equi-
librium point is represented by a darkened line and that the
balloon velocity may exceed the ﬁpper or lower limits of the

graphs over certain intervals. In such situations portions of
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Table 5-5

Values of Dimensionless Parameters for Phase I

Pafameter Definition .Value
12 Yo -4
Ly - = 3.5914x10
2 g (g/R -yD? | -3
L - 1.7317x10
5 2 .
e -3 AT
fo

ul' ul/A ”}0

& kD 8.168x10"% to 8.168x1071

& b 8.168x103 to 8.168

K

. 8.168x10"% 8.168x10™3 8.168x10™2 8.168x10™ 1
w

-3
8.168x10 Ay Ayq Ayq Ay,
8.168x10™2 Agy Apy Ay Ay,

-1 .
8.168x10 Agy Ay Ags.- Agy
8.168 Ay Ayy Ayg Agy.

Figure 5-1. Basic Matrix A4 for
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Table 5-6

Typical Dimensional Values for Phase I

Phyéical , L
Parameter Value
T, 218° K
R 2.870224 x 10° cm?/sec? %k
Y 0.0 oK/cm
g 980.6 cm/sec
u, | 1.40646 x 10~% g/cm sec
A 100.0 cm/sec
D | 130.0 cm
ﬁl 1000.0 cm/sec
o 3.61494 x 10~% g/cm®
o 3.61494 x 10~% g/cmS
K 6.28 x 1076 t0 6.28 x 1073 cm1 *
W 6.28 x 1073 to 6.28 x 10”1 sec™! *

*Such ranges of k and w correspond to spatial wave lengths
from 10 m to 10 km and time periods of 1 sec to 1000 sec.
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velocity plots are ''chopped off". Examination of Figures 5-2
through 5-6 reveals that all runs, which are off o0f the main

PR

diagonal, display a periodic motion which is in good agreement

with first-order theory. As shown in Appendix O, the period
of oscillation according to first-order theory is given by

A
|

~&| “ (5-1)

where
(5-2)

o
[}
W‘zls:

Along the main diagonal where Taylior's Hypofhesis ié satisfied,

no long-~term periodic motion is observed. The balloon experiences

one or two oscillations after &hich the velocity components

appear to reach steady-state values. It is important to note, however,
that under such steady-state conditions the balloon drifts

laterally (perpendlcular to the mean wind direction) and general—

ly remains below its equ111br1um altitude.

5.2.1.2 Phase I-Intermediate Runs in Cruciform Arrangement

The marked difference between on-diagonal and off-
diagonal runs suggested the need for runs at intermediate values
of wave number and frequency in the vicinity of the main dia-
gonal. Accordingly two sets of runs in cruciform arrangements,
022 and 033, about elements A22 and A33, as shown in Figure 5-7,
were carried out. A quantitative description of the results of
these runs is presented in Appendix P. The basic trend observed
in both sets of runs was one of increasing disagreement between
first-order theory and observation as conditions satisfying Taylor's
hypothesis were approached along any branch of either cruciform.
This trend indicates that nonlinear effects become significant
under conditions which (nearly) satisfy Taylor's Hypothesis.

It was also observed that the bounds of the region in which such
nonlinear effects occurred were .related to the magnitude of

the product of “the dimensionless perlod of oscillation, as computed
by Equation (5-1) according to first-order theory, and the dimen-

sionless wave number. 46
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5.2.1.3 Phase I-Special Runs Concerning Lateral Drift

In all cases of balloon motion studied during Phase I;
a lateral(xz-direction) drift was noted. That is, the balloon
_appeared to be subject to a mean lateral velocity. This drift
was obseréed for the 16 cases comprising -the original éxperiment,
matrix as shown in Figure 5-2. An example of this drift is shown in
Figures 5-8 and 5-9. Figure 5-8 represents a case off the prin-
cipal diagonal of the experiment matrix and shows the supér—
position of the oscillation due to the fluid oscillations and
mean drift. Figure 5-9 represents a case on the principal
diagonal and shows an initial or transient displacement of the
balloon (a feature found in many of the cases examined both on
and off the principal diagonal) followed by a final mean drift

in the opposite direction.

In examining long periods of balloon motion, it was
found that the final direction of the lateral balloon motion
depended on which side of the principle diagonal of the experi-
ment matrix the experiment occurred. Thus, the final direction
of drift appeared to depend in general on the sign of the
guantity (u - c), where u is the mean wind velocity and ¢ is the
phase velocity. When ¢ >u, a positive lateral drift was observed
for the flow field under examination and when ¢ <u, a negative
lateral drift was observed. Examination of the flow field model
confirmed in general that with such inequalities, the balloon
would be subject to lateral forces consistent with the drift
observed. However, since a negative lateral final drift was
observed when u = ¢ (as shown in Figure 5-9), this rule was not
considered sufficient and further tests were necessary.

Several runs were prepared to examine the effects of
modificdtions in the flow field on the balloon drift. These
cases consisted of (1) varying the initialization of the balloon
motion, (2) modifying the initial phase relationships among
the velocity perturbations, and (3) setting u = 0. These tests
were carried out for the two matrix points, A11 and A31, as

indicated in Figure 5-7.
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For both cases the first two procedures produced results
which generally resembled those of the original experiment.
Neither altering the initialization by setting

v =1 . - (5-3)

rather than

A

¥=ui | ) (5-4)
nor changing the phase angles of_the y and z perturbations,
0y <—>04 (5:?)

quantitatively affected the direction of the drift. Setting u.= 0
alters the original experiment such that ¢ >u at all times. With
this point in mind, the results, which showed the balloon drift-
ing off in the positivexg—directionq were consistent with the

rearlier experiments.

The preceding results indicated that there was no
special bias in the model which caused the lateral drift along
the main diagonal where Taylor's Hypothesis for the fluid was satis-
fied. Further study revealed that .the mean balloon veloecity, v,
(instead of the mean wind velocity, u,) was the appropriate
variable to be compared with the phase velocity, c¢. Thus the
dividing line for lateral drift corresponds to

v =oc (5-6)

representing Taylor's Hypothesis for a finite parcel. This
relationship is satisfied slightly to the left (c> u) of the
principal diagonal of the original matrix. Three test cases

were performed to confirm this relationship. The first, desig-
qated Ty., corresponded to v <c; the second, T2, represented v = c;
and the third, T3, V > c. Figures 5-10 through 5-12 illustrate
how the lateral velocity Vo asymptotically reaches a constant

value in accordance with

>0 (v < ¢)
Vo % =0 (V= ¢)
<0 (V > ¢) (5-7)
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Similﬁrly, Figures 5-13 through 5-15 show the lateral drift
changing direction.* '

Thus the question of lateral drift was resolved and
the distinction between Taylor's Hy?othesis for the fluid
(u = c) and Tayior's Hyﬁothesis for the parcel (v = ¢) was
clearly established. S | - |

5.2.2 Phase II-Numerical Experiments

As noted in.subsection 5.2.1.3 the results of,Phase I
revealed the distinction between Taylor's Hypothesis for the fluid
(THF) and Taylor's Hypothesis for a finite parcel (THP). In
addition, there was some indication that nonlinear effects. v
became significant when the product of the dimensionless wave
number and the dimensionless period of oscillation, according
to first-order theory, exceeded some limiting value. Fof these
reasons a second experiment matrix Bnk was designed. The rela-
tion:between the original matrix Aij and the second matrix.is
depicted in Figure 5-16. In the matrix Blk along each row the
product of k + @ was held constant while along each column the
ratio of m/i remained constant. The arrangement of the matfix,
along with the value of i and  for each element is shown in
Figure 5-17. The values of all other parameters are the same

as for the first matrix.

Also'inciuded in the figure is the product of the
dimensionless wave number and the dimensionless period of oscil-
lation (according to first-order theory) for each element of
the matrix. It is importantxto note that along each column this
product remains constant, with THF being represented by the
fourth column. Because the mean balloon velocity is a dependent
variable, it is not possible to satisfy THP exactly along any
column of the matrix. Based on analysis of the special runs of
Phase'I, however, the third column was empirically designed to

* Notice should be taken that the direction of lateral drift when
vV # c depends upon the flow field model. Thus the inequalities
presented in Equation (5-7) might be reversed in some cases.
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SAI-0936
Figure 5-16. Relation Between Experiment Matrix Aij
of Phase I and Bk2 of Phase 11
\\\\\\» Bk 14.644 11.161 10.580 10.000 6.164
- ltk| 1.353 5.413 10.825 o 1.804
ok
-4
2.0182x10 Byy By Bya By, Bg
3.7124x1073 4.2529x10°3 4.3674x10"°  4.4924x10"3  5.5651x1073
5.4361x10~2 4.7466x1072 4.6209x10"2  4.4924x1072  3.6265x1072
2.0182x10™2 B B B B B
. 21 22 23 24 25
3.7124x10™2 4.2529x10™2 4.3674x10"2  4.4924x10"2  5.5651x10™2
5.4361x10"1 4.7466x1071 4.6209x10"1  4.4924x10"1  3.e265x1071
2.0182 By By, Byg By, By
3.7124x1071 4.2529x1071 4.3674x10"1  4.4924x10°!  5.5651x10"1
5.4361 4.7466 4.6209 4.4924 3.6265
numbers. The upper is i

and the lower is &,

Figure 5-17.

Matrix B
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approximately satisfy this hypothesis based on the value of the
product, k. '

.- | A complete set of detailed plots from Phase II is
providéd in a separate document [1]. Qualitative results are

given graphically'in-Figures 5-18, 5-19 and 5-20. The period

of observation is the same for each column but none of the othér
coordinates necessarly coincide. Figure 5-18 presents the ver-
tical velocity of the balloon and the wind at the balloon's posi-
tion as a function of time. These results are similar to those
found in previous cases. The vertical position of the balloon,
shown in Figure 5-19, is seen to correspond to the vertical
velocities. Away from THP corresponding to column 3, the balloon
is seen to oscillate regularly. Close to THP the balloon is

seen to reach equilibrium at progressively lower altitudes

tb the right (along the rows), or toward the bottom (along the
columns), of the figure. Along the bottom row, it can be seen that
the balloon does not reach equilibrium within the time period shown,
dlthough the balloon velocities are approaching zero. Also in the
fast case shown along the third row the oscillation is not found.

Figure 5-20 shows the lateral position of the balloon
as a function of time. The results are very similar to those
discussed in subsection 5.2.1. When the phase velocity exceeds
the mean balloon velocity (c>5)’corresponding to column 4 and 5,
the balloon drifts toward the positive y-direction. When c<Vv
corresponding to column #1 and #2, the balloon dirfts toward the
negative y-direction. It is important to note that along column
#3 Taylor's Hypothesis for the parcel is not exactly satisfied.
In row #1 of column #3 the balloon drifts toward the positive y-
direction in near equilibrium, while in subsequent cases the
balloon drifts toward the negative y-~direction. Thus, the
assumption that THP depends only on the product ¥k is found to
be incorrect as it probably also depends on the scale of motion
(which may also be responsible for the differences seen in row

#3 of Figures 5-18 and 5-19).
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5.3 General Observations Concerning Balloon Response

Examination of the numerical results from Phases I and
II of the numerlcal experiments revealed a number of. 51gn1flcant
features of the balloon behavior. First of all, the mean motion
of fhe balloon in the horizontal plane did not in general corres-
pond to mean horizontal wind. As already noted the balloon exhib-
ited a lateral drift except when Taylor's Hypothesis (for the par-
cel) (THP) was satisfied. In addition, when the X4- component of
the mean wind velocity greatly exceeded the phase velocity (ﬁl>>c),
the balloon mean X velocity component generally was slightly less
than the wind velocity component (v1< ul) as shown in Figure 5-21.
However, as ¢ increased relative to uy, vi also increased until,
as Taylor's Hypothesis (for the fluid) (THF) was approached, Gl
first equaled and then exceeded u, . Subsequently when THF was
satisfied, 31 exceeded both ﬁl and ¢c. For a value of ¢ slightly
greater (~5%) than ﬁl, THP was satisfied with ¢ becoming equal to
Vqe Further increases in c resulted in a reduction in v; until,
for cases where ¢ was very large compared with u;, vy became

essentially equal to ﬁl.

Comparison of the quasi-Lagrangian frequency of the
balloon, Qﬂ_ with the Eulerian frequency of the wind, w, also
proved of interest. The quasi-Lagrangian frequency was less than
the Eulerian frequency for all values of ¢ greater than ﬁ1/2. For
smaller values of ¢ the quasi-Lagrangian frequency exceeded the
Eulerian frequency. This variation is shown in Figure 5-22. As
indicated in the figure the quasi-Lagrangian frequency is zero
when THP is satisfied (c¢ = 31). Also the quasi-Lagrangian fre-
quency equals the Eulerian frequency for c = 61/2.

As indicated by the figure the numerical results
generally agreed with linear theory except in the vicinity of
Taylor's Hypothesis where non-linear effects became significant.
The relation between the quasi-Lagrangian frequency and the Eulerian
frequency was observed to be '

gﬂ =

kc-kv (5-8)

1
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where ‘
w= |ke| : v ' (5- 9)

.Thls relatlon is qulte 51m11ar to that suggested by Gifford [128] )

which, as.shown in Sectlon 2 3, was of the form : :

w = QL + k u1 . (2-1)
In Gifford's case the Eulerian frequencies were all larger than-
the Lagrangian frequencies and thus the absence of the absolute
value signs was of no significance. With this fact in mind,
combined with the observation that

vy T uy (5-10)
it can be seen than the two relations are nearly equivalent.
Notice should be taken that the first-order perturbation analysis

presented in Appendix H also suggested this same type of relation.

Gifford demonstrated [128] that a relation of the form
of Equation (2-1) was sufficient to correlate the measured Lagran-
gian spectral peak frequencies to the corresponding Eulerian
spectral peak frequencies. Three investigations by Angell et.al.
[132,137,1421 also developed and compared Eulerian and quasi-
Lagrangian spectra as discussed in Section 2.3. Unfortunately, in
none of these studies were the values of the spatial wave number k
determined.* 1In every case, however, the Lagrangian frequencies
were less than the Eulerian and there was a tendency for the ratio’

( = w/Qi) to increase as the wind velocity increased. These

observations are consistent with the form of Equation (5-8).

In two other studies discussed in Section 2.3, Kao et.al.
[133,134] also presented Eulerian and Lagrangian spectra for
comparison. In these cases,which involved much higher altitudes
and lower frequencies than the studies of Gifford and Angell, the
Lagrangian peak spectral frequencies were larger than the Eulerian.

* It is not sufficient to calculate k according to the relation,
k = w/c, because this relation is based on the assumption that

THF holds.
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)

; Based on Equation (5-8) and Figure 5-18, it would appear

that the phase velocities encountered by Gifford and Angell exceeded
51/2; while the phase velocities involved in Kao's investigation

were less than this value. This result is genefally similar to the

observations‘of Mizuno and Panofsky [180] in the atmospheric

surface layer. However, because of the fact that both Gifford's

and Angell's data involved measurement of small-scale vertical
fluctuations at low altitudes (300-4200 feet) while Kao's data.
involved measurement of large-scale horizontal fluctuations at
higher altitudes (18000 to 30000 feet), a certain degree of ‘caution
must be'exercised before drawing any final conclusions concerning
the relative magnitude of phase velocities and mean wind velocities.

Many of the investigations discussed in Section 2.3

involved measurement of the ratio of the Eulerian frequency to the

quasi-Lagrangian frequency B. It is important to note that

B = w/q)
= |kel|/Q (5-11)

A combination of Equations (5-8) and (5-11) yields

B = ke
[ke - kv, |

_ C

c

\&1

(5-12)

Except in the immediate vicinity of Taylor's Hypothesis, Equation.
(5-12) can be approximated as

a
_1_ . |  (5-13)
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6. CONCLUSIONS AND RECOMMENDATIONS

Clearly the response of a constant-volume balloon to-
atmospheric turbulence is a complex problem. The current investi-
gation has utilized a more rigorous mathematical model than pre-
viously employed, but even so, certain simplifications were made
to keep the problem tractable. Representing the flow field as a
periodic function, as opposed to a random variable, is of special
significance. Some of the responses of the balloon to the periodic
function may not occur in the presence of the real random process.
Thus, caution must be exercised in reaching general conclusions.
At the same time, the numerical results obtained are in general
agreement with observations, and a number of points are worthy of
note. These matters are presented in subsection 6.1. In the
éourse of the study a number of questions arose for which no
answers could be obtained due to time and funding limitations.
Certain recommendations aimed at answering such questions are

provided in subsection 6.2.

6.1 Conclusions

First, the distinction between Taylor's Hypothesis (for
the fluid) and Taylor's Hypothesis (for the parcel) is of consider-
able interest because this distinction sheds light on a number of
characteristics of the balloon motion. The balloon does not move
with the same mean velocity as the wind and thus when THF is satis-
fied the balloon does not "lock in" with the wind velocity. When
THP is satisfied, however, the balloon does match the mean wind
direction (but not its speed). Under such conditions the balloon

displays no oscillation or lateral drift.

Except in the vicinity of Taylor's Hypothesis the quasi- _
Lagrangian frequengy of the balloon could be related to the Eulerian
frequency of the wind by means of a Doppler shift law, in accor-
dance with first-order theory. 1In the vicinity of Taylor's Hypothe-
sis first-order theory was not sufficient to relate the Lagrangian
and Eulerian frequencies. When THP was exactly satisfied, the

Lagrangian frequency was, of course, zero.
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Based on available measured data, it would appear that
constant-volume balloons generally display some oscillétory mo-—
tion and thus THP is not being satisfied. Because THP is gene-
rally close to THF, this suggests that the latter is also not’

being satisfied.

An examination of the available Eulerian and Lagrangian
turbulence spectra obtained from earlier studies indicates that
a simple Doppler shift relation sucﬁ as that suggested by first-
order theory is possibly sufficient for correlation. Unfortun-
ately such ah approach requires values of the spatial wave number
(based on direct measurement as opposed to calculation based on
Taylor's Hypothesis) and fhese Vélues are not generally available.

Although the balloon did not respond exactly to either
the mean wind velocity or the periodic velocity fluctuations,
the wind velocity served as a forcing function. The natural
oscillatory frequency of the balloon was only observed during the
initial phase following the start of a test case.

Casting the problem in dimensionless form and providing
a dimensionless numerical solution are also significant. Unfortun-
ately a complete evaluation of the relative importance of the per-
tinent'dimensionless groups was not accomplished and it is not
clear whether or not a more "universal' solution can be obtained.

6.2 Recommendations

The most important recommendation would be to replace
the current periodic model for the flow field with a random model.
The resulting ballcoon motion could then be subjected to Fourier
analysis and realistic Eulerian and Lagrangian spectra could.be
generated and compared.

Further analySis of the existing numerical data should
be made to provide better understanding of the relationship be-~
tween the various parameters. Such analysis might lead to a more
precise relationship between.Taylor's Hypothesis (for the fiuid)
and Taylor's Hypothesis (for the parcel). '
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The dimensionless groups associated with the dimensionless
form of the equation should be varied over a wider range of values
to establish their relative importance. A more general solution
should be obtained if possible.

Further study should bé made of existing Eulerian—Lagrangian
turbulence spectra to provide more conclusive proof of the Doppler
shift relation between these two types of systems. Methods for
calculating the spatial wave number as a function of altitude,
without use of Taylor's Hypothesis, should be investigated.

Further investigation should be made into the question of
the difference between the mean direction and speed of the balloon
motion and that of the wind. Conditions under which such differ-

ences are significant in the atmosphere should be defined if

possible.
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APPENDIX A

Balloon Terminology

During the past 65 years a number of different terms have
been used to describe that class of balloons which are designed for
horizontgl flight with a constant volume at essentially a constant
altitude. The definitions which follow are designed to aid the
reader in understanding the similarities and differences between
the types of balloons to which the terms apply. For convenience
the definitions are arranged in alphabetical order,j :

CONSTANT A%TIT?DE ?ALLQO? - A-hel;gmjfi}}gq,_zero—presgure balloon
made of polyethelene for high altitude research.
CONSTANT DENSITY BALLOON - A pillow-shaped balloon made of Mylar.

CONSTANT-LEVEL BALLOON - A balloon which by means of ballast or
superpressure is designed to operate at essentially a

constant altitude.

CONSTANT-PRESSURE BALLOON - A balloon of the type used in the
transosonde system.

CONSTANT-VOLUME BALLOON - A balloon whose volume remains essen-
tially constant during fiight. This condition is usuaily
achieved by inflating the balloon to a pressure which is
considerably greater than the ambient air pressure at

the equilibrium altitude.

CONTROLLED ALTITUDE FREE BALLOON - A balloon made of polyethelene
with a control device to maintain constant altitude.

HORIZONTAL SOUNDING BALLOON - A superpressure balloon made of Mylar
designed for level flight for periods in excess of 60 days.

LEVEL BALLOON - An expansible balloon made of rubber or Neoprene
equipped with a valve in the neck to maintain constant

levels at high altitudes.
NEUTRAL BALLOON - A balloon with zero 1lift.

PILOT BALLOON ~ A balloon made of rubber or Neoprene used for
observing winds aloft.

SUPERPRESSURE BALLOON - A balloon made of nonstretchable material
(normally Mylar) so that its volume is essentially
constant with excess internal pressure.
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TETROON - -~ A one-cubic-meter constant-volume balloon of tetra-
hedronal shape constructed of Mylar. :

TRANSOSONDE - A constant-level balloon equipped with meteoro-r

logical sensing 1nstruments, a radio transmitter and
. power supply. . . N
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APPENDIX B

Equation of Motion for Immersed Bodies

The governinglequation for the motion of a body submerged
in a turbulent fluid consists of the equation for the conservation
of momentum of ithe body coupled with-the equation for conservation
of momentum of the fiuid. The governing equation has been developed
in various forms 141,144.-156,161,163,165,166 with various simpli-
fying assumptions for a number of different applications, but there
is not total apreement as to the validity or equivalence of all
such forms: The development which follows is relatively general and
the result is an equation which is representative of the type en-
countered in the analysis of the motion of bodies immersed in a

turbulent flow.

Congider first the conservation of momentum for a spheri-
cal body of density ¢, diameter D, and mass m, slowly moving
(Re<0.1)* with a velocity vi in an otherwise stationary fluid in
the presence of a gravitational field, as originally developed by

Basset 144 . This equation can be written in the form
dvi dvi .

moFr thy g - (Fpli t (F))y v (B (Fg)y (B-1)
where

m, = % m p/C (apparent mass) (B-2)
(FD)i= -37 DUvi {(drag force) (B-3)
(Fb)i= -m/cap/axi (pressure force) (B-4)
(Fg)i =m gy (gravitational force) {B-5)

t dVi(t')/dt' dt?

(Fy); = 3/, oD? o j’ ‘/_t_-_g_ (Basset term) (B-6)

o

* This condition is not necessarily satisfied with a CVB
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Before proceeding further it is important to note that
the apparent mass term, madvi{dt', can be derived from inviscid
flow theory and has the same value for both viscous and inviscid
flow. The apparent mass term represents the time-rate-of-change
of fluid momentum due to inviscid effects. The Basset term is
produced by viscous effects and thus can be interpreted as the
Eime—rate—of—change of momentum of the fluid due to viscous
effects. Together the apparent mass and Basset terms produce an
additional drag on the body which is a function of the time-rate-
of-change of the relative velocity of the fluid with respect to

the body.

The next step in the development involves considering the
case of a body slowly moving in a fluid with non-uniform velocity
uy (t,xi). The non-uniform velocity uy (t,xi) represenis a turbulient
flow process with the following assumptions [148].

1. The turbulence is steady and homogeneous.

2. The domain of turbulence is infinite ;n extent,

3. The body is spherical with a motion relative to the
fluid which is characterized by a Reynolds number
less than 0.1.%*

4. The body is small relative to the smallest turbulence
wavelength present.

5. While the body is in motion the fluid immediately
surrounding it will be composed of the same fluid
particles.

6. The only external force acting on the body is produced
by a gravitational field (or other potential field).

The conservation of momentum equation for this case can be written:

dv].L d(vi—ui)
mogg vy, g T (Fply t (Fy t (Fy o+ (Fp)y (B=7)
where
(Fy); = ~3mu(v, - u,) (B-8)
(F,); = -m/o 3p/3x, (B-9)

* The condition of small Re ( 0.1) is not necessarily satisfied
with a CVB.
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(F),.= mg, (B-10)

g'i i [ ]
t
G |v,(t") = u,(t")
3 2 i i | /dt’
- = pDV1v
z P '4: Yy ot -t

dt' (B-11)

(Fpl;
Notice should be taken that in apparent mass term, the drag term,
and the Basset term the body velocity vy has been replaced by the
relative velocity (v:.L - ui), because in each case the resistance
is a function of the relative velocity between the body and the
fluid.

The next step in the development of the body momentum
equation consists of expressing the pressure force term as a
function of the fluid velocity. For the case of an incompressible
fluid with a velocity ui(t) which is a function of time but is
spatially uniform, conservation of fluid momentum can be expressed

as
Dui
P T TIP/9x; *oegy (B~12)

For the case of the non-uniform fluid velocity ui(t,xi) the instan-
taneous equation for the conservation of fluid momentum can be
written for the incompressible case as:

2
Dui d Uy
PoT T TIR/AE; T M gt P (8-13)

J

Notice should be taken that in equation (B-13) the instantaneous
fluid properties are represented and not the time-averaged. Thus,
although the flow may be turbulent, no turbulent or Reynolds
stresses appear in the equation for momentum conservation.

In his original development Tchen [145] neglected the
viscous stress terms and effectively equated the follow-the-fluid
particle derivative, Dui/Dt, to the follow-the-solid body
derivative, dui/dt. Such a process corresponds to the simpli-
fying assumption:

du

1
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Tchen used this relation to replace the pressure force term in
equation (B-1). Corrsin and Lumley [146] first noted the inexact-
ness of this approximation while Hinze [148] indicated that such

an approach was valid if:

2
D Ju
—v 3}—(- <<l (B—15)
and
A (5-16)
D7 (3 u/3x")

Hinze's development of Equations (B-15) and (B-16) is not
altogether rigorous as indicated by the absence of subscripts.

More precisely the two conditions are:

du,
2 i
D (u, - v )(___)/ (u. - v.,)} |<< 1 (B-17)
18y k k Bxk i i
and
Vi (aui/axk)
= > 1 {B-~18)

2
2/3 v(3 ui/zu-:‘j axj)

If the flow is near isotropic it is reasonable to assume:

Uy - Vy oz Uy - Vg oz Uy = Vg (B-19)
Vi = Vg = Vg (B-20)
u., au. U
axl ® axl ; axl (B-21)

1 2 3
and
azui Bzui Bzui

x = (B-22)

ax 2 ] 2 3x 2

1 X9 3

With these assumptions equations (B-17) and (B-18) reduce to

p2 1 (B-23)

au. /ax. <<
Sv * J
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and

9 | v. .
2L 12| 5 |>>1 s - (B-24)
D (5 ujlax Kk ‘ : - .

Equations (B-23) and (B-24) are seen to agree_withfeqﬁétioné (B-15)
and (B-16) except for the subscripts, the numerical constants,

and the use of absolute values, all of which Hinze omitted. .

Because the spatial derivatives of the fluid velocity
represent instantaneous values as opposeéd to time-averaged values,
for the case of homogeneous turbulent flow, the order of magnitude
of such derivatives can be expressed'in terms of the scale and

[P T R -y I R,
urpulence as 1L01L10wWs .,

| du; /3% |:\/ 1—1—’-2— /2y . (B-25)
i o
2 ~ —p— 2
| azui/axj BRY T (B-26)
i . )

where
b Y - wnt nwrms e~ T A AP daraalharT A A
A - AL UVU-DULUALT UL LUL PDULTHUT

A combination of equations (B-23) and (B-25) yields:

2 .
D
—_— Al -
6V vu,l 2 / 3 << 1 (B-27)

while combining equations (B-24) and (B-26) produces:

9 | vy | 2.2 :

5 J __ >>>1 (B-28)
D° 4§ 2 .
Now
vi T U+ J = _ ~ (B-29)
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Thus equation (B-28) can be redﬁced to

2

9 W/ —/z * 1A -
- uy -
= >>> 1 (B-30)

p?

For a turbulent flow field with known values of kinematic viscosity,
turbulence intensity, turbulence micro-scale, and mean fluid
velocity, equations (B-27) and B-30) provide a means of quanti-
tatively determining the maximum size bodies for which Tchen's

approximation of the pressure force is valid.

For spherical bodies which satisfy the preceding restric-

tions the particle momentum equation can be written

dv, d(v;-u;) du,
mF tM,gr - “3TDM(V; - w) *myo g+ mg; - mpg;/o

t d [v;(t")-u;(t")]/dt’

3 2 dt' (B-31
-3 D" | mou ./(; J t-t )
Now
m= L p3 (B-32)
and
m = L D% | (B-33)

Introduction of the two preceding relations into equation (B-31)

produces
dv, du, t g [w; (£")-v; (£")]/at’
dT+av.=aui+bat—+cf dt' +dg, (B-34)
1 o ,[ t -t 1
where
a = 36u
(26 + p) D2 (B-35)
- 309 -
b 5% * p (B-36)
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18 YT (B-37)

¢ T s +p) D T
a = 355 - (B-38)

Equation (B-34) is the most familiar form of the immersed body
momentum equation. It should be realized, however, that in

this idrm.the application of the equation is generally limited
by the original assumptions, as well as the restrictions imposed

by equations (B-27) and (B-30).
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APPENDIX C

Derivation of Dimensionless Equations
for Conservation of Balloon Momentum

-As developed in Section 3.1.1 the equations for conser-
vation of balloon momentum in dimensionless form can be written

@ 5 \x 3 g . LT 2
= (—L”zﬂ,)" T -%)+3 (m)cm @ -9 a-7

B - dt’ (C-1)
'18(“0)‘,“ fo Je-t

Now the density p is not a constant but varies with altitude, Xg.
For an ideal gas
o = B (C-2)

For the case of a constant temperature lapse rate, y, in a
hydrostatic atmosphere,

g
o T \RY c-3
P =P, (To) ( )

A combination of Equations (C-2) and (C-3) produces

g
_P (T _\RY
P = RT T

g _
P :r__)ny
TO

Y Ry -
= po [1 - T; (X3 - XSO)] (C 4)
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where x is the equilibrium altitude at which o =Py - If

30
Equation (C-4) is divided by 0 the result is
. . - -1
~ _ Po Y Ry
o= g [1 - T (x5 - xsoﬂ
- [1 & A ~3] b-1 ’ (C-5)
where
~ _ YD ‘
a=g . (C-6)
(o]
Ais = Xg/D - X34/D c-7)
b = g/(RY) ~ (C-8)

Now Equation (C-5) can be substituted into Equation (C-1) but the
result is quite cumbersome. A term by term examination of the

R. H. S. of Equation (C-1) reveals that only in the numerator of
the fifth term, representing buoyancy, does the variation of ¢
appear significant. If Equation (C-5) is substituted into only
this term in Equation (C-1), the result is still awkward because
of the nonlinear form of Equation (C-5). To avoid this difficulty,

by means of series expansions,

(1 - a Ais)b‘1 =1-(b-1)3 Bk;+ O (Azis) (C-9)

Neglecting second order terms,

P =1-(b-1)aldk (C-10)

If Equation (C-10) is substituted into the numerator of the fifth
term of the R. H. S. of Equation (C-1), the result is
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1)a
2+

7‘!

_2

A%y € 853 - 5( ) ./

| ., - vi)l'u -V
2y
8x3
t <uv eAﬁi)
dt'
~ (C-11)
- t'

Equation (C-11) represents a dimensionless form of the balloon
equations from which certain dimensionless parameters can be
‘obtained. A term by term inspection of the R. H. S. of Equation
(C-11) results in the following dimensionless groups:

Ly = 375
Ly = 25 +5
L3 2
Ly = 3 Cpg
Ly = 5

o
|

Vv
6 = © \fhb

In terms of the six preceding dimensionless groups,

can be written
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(C-12)

(C-13)
(C-14)
(C-15)
(§-16)

(C-17)

Equation (C-11)



di’yi : -+ >
—= = 8LyLg (f;-9y) + 3LiL, (§;-¥)[a-¥]
dt : '
! 8l
+ 3L, —= + L, (V.,-i,) — - 3L,L. Ax.6.
Liop "R - ols %3033
£
| —l3L1L6‘/ S Ay gt

‘v & S
- _ . . (C-18)
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Dimensional Invi

APPENDIX D .

scid Flow Field Development

The velocity components are assﬁmed.to be of the form

up =Wy +Asin (k) x kg x) 4 kg g - ot +g) ~(D-1)

up=Bsin Oy xy +lg X tky k- ut 4 Q) (D-2)

u3 = Csin (g X +1y % +1g x5 -t + Gy) (D-3)
For brevity 1let

E=k1x+k2y+k3z (D-4)
Then

oy

" A o8 (B -t + 8 (D-5)

%*B"zws(g-“’“@z) (D-6)

:l—xl:-= Cky cos (E - wt + O5) (D-7)
For mass conservation,

i T

=, | T, g 0 (D-8)
Thus

Aklcos(i-wt+91)+Bkzcos(E—wt+®2)+Ck300s(£-wt+03)

=0
or
Ak, {cos ( E-—um)‘cos 0

- sin (§ - wt) sin

(D-9)

- sin (§ - wt) sin Ol} + Bk, {cos (£ - wt) cos O,

Oz} + Ckg {cos (£ - wt) cos G

- sin (§ - wt) sin 63} =0 (D-10)

To satisfy Equation (D-10

), it is necessary for

(Aklcos61+Bkzcos02+Ck3cos(93)cos(g—wt)=0 (D-_11)
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and

(Ak; sin 0; + Bk, sin 0, + Ck, sin 03) sin (§ ~wt) =0 (D-12)’
This in turn requires

Ak; cos 0 + Bk, cos 0, + Cky cos 05 = 0 | | .(1__)-,13_)'
and

Ak1 sin 61 + Bk2 sin 02 + Ck3 sin @3 =0 (D-14)

Equation (D-~13) can be multiplied by tan 61 to obtain

Ak1 sin 01 + Bk2 cos 62 tan 91 + Ck3 cos @3 tan @1 =0 (D-15)
Subtracting (D-15) from (D-14) yields

Bk, (sin 6, - cos 0, tan 0;) + Ck, (sin 6, ~ cos g tan 0,) = 0 (D-16)

Solving for B,
Ckg (sin 63 - cos 03 tan 01)

B= - 3 - (D-17)
K, (sin Oy - cos O, tan ©,)
Next Equation (D-13) can be multiplied by tan 62 to obtain
Ak, cos ©; tan O, + Bk, sin 8, + Ck; cos O3 tan 0, = 0 (D-18)
Subtracting (D-18) from (D-14) yields
Ak, (s:LnG1 - cos@l tan®, + Ckg (sin®; - cosOg4 tan©45) = 0 (D-19)
Solving for A,
Cieg (sin®, - cos9, tan©,)
A= - o = i o @2) (D-20)
1 SinY —cosYy tan¥y o

Thus if Equation (D-17) and (D-20) are satisfied, the inviscid
flow field model described in Equations (D-1) through (D-3)
satisfies the continuity equation.

Certain other partial derivatives of velocity with reSpect
to space and time can be derived from the model as follows: '
aul

=, - Ak, cos ( E- wt + 0)) - _(D-z;')
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Sig = Akg gos (8 - wt +0y) _ : '(D—22)
'ggf = Bkjcos (B -wt oy T (D-23)
'ng = Ck; cos (§ - wt + 0,) ' B | ~ (D-25)
E;g = Ck, cos (£ - wt + 03) | _ _ (Df265
'§§l==_Aw cos (£ - wt + 0;) (D-27)
§;§==—Bm cos (£ - wt + 0,) (D-28)
§E§==—Cw cos (£ - wt + 03) (D-29)

As formulated the model contains a total of eleven
different parameters (ﬁl, A, B, C, kl’ kz, k3, w, 04, 09, and 93).
As given by Equations (D-17) and (D-20) for conservation of mass,
two of the three amplitudes (A, B, and C) must be functions of
the third. Thus there are nine independent parameters in Equations
(D-1) through (D-3). In the current Study, it was not feasible
to consider all possible combinations of these nine parameters.
The following simplifications were made: First, all wave numbers

(kl’ k2 and k3) were taken to be equal,

k1 = k2 = k3 = k (D-30)

Second, by proper choice of the phase angles (el, 92, and 93) the
amplitudes were taken to be equal.

A=B-=C (D-31)
It can bé readily shown by means of Equations (D-17) and (D-20)
that the phase angles,

0, =0 : (D-32)

2m /3 (D-33)
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0, = -21/3 - (D-34)

3
or any similar combination of phase angles set 120° apart, satisfy
Equation (D-31).

Based on the simplifications noted, the fluid velocity
components can be written as

u; =T, 8,4 + A sin (g - wt + 0,) o (D-35)
where

L=k (% + x5 + Xg) ' (D-36)

6, =0 L o .- (D-37)

0, = 21/3 . ~ (D-38)

0q = -21/3 (D-39)
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APPENDIX E

Dimensionless Inviscid Flow Field Development

As’ developed in Appendix D, the wind'velocity components

can be expressed as:

u; = uy Gil + A sin ( Z- wt + Gi) (E-1)
where

T = Kk (x1 + Xy + x3) (E-2)

01 =0 (E-3)

@2 = 21/3 (E-4)

93 =-27/3 (E-5)

Based on the nondimensional procedure followed in
Appendix C, Equation (E-1) can be written in the following

dimensionless form:

-~

ﬁi =0y 8,4 +sin (T - &t +0,) (E-6)
where
u; = u,/A (E-7)
u, = /A (E-8)
L=k (il + %, + ia) (E-9)
& = wD/A (E-10)
t = At/D (E-11)
k = kD (E-12)
ii = x,/D (E-13)

Equation (E-6) represents the dimensionless form of the inviscid
flow field. Notice should be taken that in dimensionless form
the flow field can be described in terms of three dimensionless
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groups, ul, k and . The dimensionless variables x1 and E are
not necessary for characterizing the flow field because they
represent the coordinates of the balloon in space and time (to
be obtained from the solution of the differential equation

governing the balloon motion).
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APPENDIX F

Reynolds Number Relation to Dimensionless Groups

_ ~ The Reynolds number for flow past the balloon is defined
as: ' ) , "
: B ’ - : IR
Re = 2_125212 f - (F-1)
Now, the maximum difference between the wind velocity and the

‘balloon velocity must be roughly equal to the amplitude A in
the inviscid flow field model. Thus, '

~Au - ;I = A (F-2)
Therefore,
Re = 9359— . (F-3)

An examination of the first dimensionless groups given in Appendix
C reveals that to first-order accuracy,

Re = 12/L3 (F-4)
where
Ly = 12v
AD (F-5)
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APPENDIX G

Dimensional Analysis

Dimensional aﬁaleis“ié:a standard feéﬁﬁiqﬁé féf reducing
thé number of variables in a problem and for identifying the
important parameters associated with the problemn. This is
particularly useful when one has a physical problem the variables
of which are well known but for which no analytic relationship'
is known. But, it is also useful for determining the necessary ’
nondimensional groups for a given set of analytic relationships
describing a physical process.’ o e e

For the analysis of a balloon in a realistic atmosphere,
this analysis is presented as an extension of the development of

" the nondimensional equations discussed in Appendices C and E.
The pertinent variables for the analysis are:

vy balloon velocity

X5 balloon position

u; ambient wind velocity

t elapsed time

p ambient density

M dynamic viscosity

g gravitational acceleration

o] density of the balloon

D diameter of the balloon

CDl drag coefficient (103 <Re< 105)

The first two variables, vy and X5 represent the unknown properties
of the balloon. These two variables are not independent of each
other since vy is simply the time deviative of X, - The variable
u;, representing the ambient wind velocity can be expressed as

u; = uy (ul,A,k,w) . (G-l)_
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The ambient density, p, can likewisg be expressed as
p”% p(p,,Y,T,,8,R,x3) (G-2)

The viscosity, u, can also'bé'expreésed as
= U(UO:Y,TO,X:;) (G—3)

Thus there are 16 variables (vi,xi,ul,A,k,w,t,po,y,To,R,uo,g,c,D;CDR)

involved in the dimensional analysis. The primary dimensions

involved are mass (M), length (L), time (t) and temperature (T).

The dimensional matrix for this case is as follows:

v X. u1 A k w t »p Y To R uo g o D CDl

i i 0
M 0 0O 0 0 0 0 0 1 0O 0 0o . 0 1 0 O
L 1 i1 1-1 0 0-3 -1 O 2 -1 1-3 1 0
t -1 0-1-1 0-1 1-0 0 0 -2-1 -2 0 0 O
T O O 0 0 0 0 O O 1 1 -1 0 0O 0 0O O

According to the BuckinghamlIl theorem, with 16 variables and 4
primary dimensions, there will be a maximum of 12 dimensionless
gfoups. The 12 dimensionless groups take on a variety of forms
depending on the choice of primary variables. If A, Py D and
To are chosen as the primary variables, then the following dimen-

sionless groups result:

n, o= v, /A (G-4)
I, = x,/D (G-5)
My = u,/A ' (G-6)
I, = wD/A (G-7)
Ny = At/D (G-8)
Ty = YD/T, (G-9)
I, = RT_/A° (G-10)
g = u,/(Ap D) (G-11)
I, = gb/A% ~ (G-12)
Mg = /P, (G-13)
M,; = kD - x . (G-14)
T2 = Cpyg 108 (G-15)



Some of the preceding dimensionless groups are identical
to or closely resemble the dimensionless groups derived in
Appendices C and E of this report. Others, however, are not so
easily identified. The relationships between the two sets of
dimensionless groups can be developed as follows: '

Gi =.H1 (balloon velocity) (G-16)

ii = I, (balloon position) (G-17)

t = g (elapsed time) _ (G-18)
- 1 ' :

L = : (G—lg)

1 2H10 + 1
L = 10 -

2 2H10 + 1 (G-20)
Ly, £ 12 Tg (G-21)
L, =1ln (G-22)

4 2 12

Il
=2 2 _
L5 =3 HQ ( H7 H6 ) (G-23)
B =, (G-26)
uy = T, (G-27)

The use of the approximate equalities in Equations (G-19) through
(G-22) and in Equation (G-24) reflects the fact that L1 through
L4 and L6 contain the variables p and u while H8’ Hlo and Hll
contain their equilibrium counterparts po and P An examination
of Equations (G-16) through (G-27) reveals that all 12 dimension-
less groups (II1 through le) appear in the definitions of the
dimensionless terms which arise in the dimensionless differential
equation for balloon motion and the dimensionless inviscid flow
field model. Furthermore, as previously noted, %i and ii (II1 and
Hz) are not independent of each other but represent the solution
of the differential equation for the balloon equation. The

variable t (H5) is obviously dimensionless time, with respect to
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which both x and v can be expressed The remaining eight dimen-
sionless groups can be reduced to flve 1f the ratio p/o is taken

~as unity and if C .is taken. as constant.* Thus, with this simpli-

fication the entire-problem can be characterized in terms of
five dimensionless groups:

_ 2 CoE,
zgv,_z E(g[R—Y)D‘ W, m?_ . and i .
R T : ,

The solution in terms of dimensionless balloon position (xi/D)
and velocity (vi/A) as functions dimensionless time (At/D)
should remain unchanged (to first-order accuracy) provided these
five groups remain constant. '

*

'This reduction from eight to five dimensionless groups is possible
in part, because of the manner in which H6’ H7, H8’ Hg, and H11
occur in the governing equations.
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APPENDIX H

F1rst Order Perturbation Analys1s of Constant—Volume
. -Balloon Motion in Turbulent Flow

The problem under consideration ‘is a’ constant-volume
balloon floating in a two—dlmensional turbulent flow field w1th
statlonary turbulence which is homogeneous in the x-d1rection

The coordinate system is shown in Flgure H-l

SALLOON INITIAL " BALLOON
X3 POSITION . PATH

1

< = PN e SN -
SN L R 20 X 92 ”1’1" - e ety e -

%30

ORIGIN
X
SAIE837

Figure H-1. Coordinate System for First-Order Perturbation Analysis

The longitudinal component of the wind velocity can be expressed as
uy (x],t,xa) = uq (x ) + u (xl,t x3) (H-1)

The fluctuating portion of the longitudinal component can be
expressed in terms of a Fourier integral,

uj (x,t,%3) =ff B (k,u;xg)e - (F*17¢F)gk g (H-2)

The coordinates of the CVB are functions of both time and the
initial balloon position. Because the turbulence is homogeneous
in the x-~direction and the mean wind velocity is aséumed to be
constant with respect to xiand t, only the x3—coordinate of the
initial position is significant. Thus

(Balloon Coordinates) = [x (t,%54) % Xg(t, xso)] (H-3)

The horizontal component of the balloon velocity can be

written as
:): ¢
1
CilEEe) gt w [X1(t.%30),t.%5(5,%30)] @)
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Eguating the horizontal component of the balloon velocity to the
correspondiﬁg wind velocity component at the balloon location is
based on the assumption that the balloon responds perfectly to
the wind velocity in the horizoﬁtal direction.

The vertical component of balloon velocity can be

written:
: 8X3
v3(t,X30) = 3¢ (H-5)

Notice should be taken that Vg cannot be set equal to vertical
component of the wind velocity, ug, because a constant-volume
balloon cannot be perfectly responsive in the vertical direction.

The balloon coordinates can be written as:

t
X1 (t,Xso) =[ Vi (t’x30) dt

t
= uy (XSO) t + 4!. ui (Xl,t,XS) dt

t) + Xi(t,X (H-6)

=% X 30

30°
and

t N
Xq (t,%X50) =[ vy (t,X3q) dt + Xg,

X3 (t,%5,) + X (H-7)

3 30

The fluctuating portion of the longitudinal component of the
balloon velocity, vi, can be expressed in terms of a Fourier
integral analogous to that for the wind velocity component, ui.

Thus:

Vi (t,X = Vl (t,Xso) - ul (X3)

30)

/‘“/‘“ i[k(X; + X{)-wt]
B (k,w;Xq)e dkdw  (H-8)

-—C0 =0
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Expahsion of B (k,w;xa) in a Taylor series about X3o yields

B (k,w X3) B (k X30) + % (X3 X30) + % % (x3_x30) + ...
)
=B (k,m;x30) + -a—g- Xé +—é— iB- (X3) + ... (H-2)

Likewise the exponential series for e ikXi can bé written

(k xi)2 + .. (H-10)

bof =

e™i-1+kx

A combination of Equations (H-8) through (H-10) yields

vy (t.X34) =£;Z:°[B (k,w;X55) + _glzi 1t 5 .2% (XS) +][

I 1 ' 2 i(kX, - wt)
+1kxl- 5 (kxl) + ] e kxl dk dw (H-11)
To first-éfder accuracy¥*
\ - 1 . 1(KX, -wt)
vi (t,%) [mLB Ge,0;%0) e 1B qu (H-12)

In similar fashion the velocity component v (t +1 , X30)

can be expressed to first-order accuracy as
*re i [k(X,+u, 1) (t + 1))
= . i T) - w _
v (t+ T,%,) Z;L B(k,w;Xgy) e L0 dk dw (H-13)

Because vi is real, the Fourier integral representation for
(t + T,Xso) can be written as

(*t+rT X30) ff B (k’w’XBO)e -i [k(X1 u1 T) - w(t + T):l:lk "

i

(H-14)

* The first term in the series expansion of B(k,®;Z) is first-order
" because B(k,w;Z) itself represents a perturbation and is first-
order. Thus the only flrst-order term in the product,B(k Z)eikx'

is the: product of the first terms of the two series.
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The product vi(t,X34) vi(t + T,X34) can be expressed as

vl(t X 0) Vl(t + T XBO)

f f f f B(k',u';Xgy) B*(k,0;X50) el(k'x"”t)

e~i [k(Ry +uy 1) -0+ D] grrgurak du (H-15)

Equation (H-15) holds for each realization of the ensemble. Thus
the ensemble average representing the quasi-Lagrangian time auto-
correlation function, can be written as '

<vi (t,X3o) vi (t + T,X30)>

o0 (=] o0 (o]
= ff f f <B(k',u';Xg5) B* (k,u;Xgq)>

-1 [Xy(k'-K)-t(w'-w)] o-1(k Uy ™= WT) gyrgyrdk dw ;(ﬁ-16)

A more useful form of Equation (H-16) can be obtained by the

following change of variables:

k - k' k' =k - k'!
!

]

kll
=w -ow'' (H-17)

wl

Introduction of k'' and w'' in Equation (H-16) produces

vi(t,X30) vi (t + T,X3O)

QO Q 0 (o]
=f f f f <B(k-k'",w-0'";Xz0) B¥(K,w;Xg0)>
——O0 —00 -0 ——

e-i(k"Xl - w''t) e_i(kul T-WT) dk''dw' 'dk dw (H_18)
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The general Eulerian space-time power spectrum,
¢E(k,m,x1,t;x3), of the horizontal wind velocity ui,(xl,t,x3)

by definition is:

-]

¢E(k,w,x1,t';x3) = f f <B(k- ",w—w";x3) B (k,m;x3) >
e i(k"xl—w"'t) dk''dw'"!’ (H-—lg)

At the balloon coordinates (il'rxso) the general power spectrum

of the wind velocity component u, (Xl,t,X3O) would be o

by (,0,%;,t;%0) = f _[m B (kk' 00" Kg) BT (K,05 Xg0)>

e 1(k' '-Xl -w' 't) dk''dw'"' _l (H—ZO)
For the case under consideration the turbulence is homogeneous in
the xl—direction and stationary, and thus the corresponding

Eulerian space-time power spectrum is not a function of Xl or t.

For such a case,

¢p (K,0,X, t;X5q) —> dp (k,w; X34) (H-21)
A combination of Equations (H-20) and (H-21) produces
[o0] oo *
¢E(krw: X30) - -l; -l; <B(k_k , W—w :Xso) B (k,wyx30)>
i(k”— - (D"t) Tt te
e Xl dk''dw (H—22)

In order for the RHS of Equation (H-22) to be consistent with the
LHS )

<B(kk'' w0 ;X)) BRE,wXg)> = Flk,piXgy) 8(k'') 8(w'')  (H-28)

where

F (kwiXy) = < Blk,w;Xgg) BXk,wiXy,) > (H-24)
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A COmbinition'of Equatidns (H-22) through (H—24) yields

op ity = [ [ F ruiXyy) 80t ()

(H-25)

and
b (KwiKy) = < B (k,u;%0) BT (kX)) > (B-26)

The gquasi-Lagrangian time auto correlation for stationary
turbulence with homogeneity in the x-direction can be developed
by a combination of Equations (H-18),(H-23) and (H-25) as follows:

<v (tXBO)V(t+TX30)> ff ¢E(ka3O

e -i (kﬁl - 07T Gk dw .
(H-27)

The LHS of Equation (H~-27) must be independent of time because,
due to stationarity the RHS is not a function of time. Thus,

vy B%g) v (E+ 1K) > —>  Hp (1,X34) (H-28)

Thus the quasi-Lagrangian time auto correlation function for
stationary turbulence, with xl—direction homogeneity, can be

expressed as:

HL (1;%39) = f f ¢ (K,w;X55) € -10ay - Wt g g, (H-29)

Equatlon (H -29) can be cast in a more convenient form

by means of a coordinate transformation where

K
f

k -
Kiy - w : (H-30)
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R o=

The quantity (-Q) is the doppler frequency observed in a coordinate
system moving with a velocity ﬁl. In K, - space Equation (H-29)

becomes v _
' | ok sk '
L -0t =% =5
oty = [ [ gam-axge | T wa
w  w
K o0
- [ & -axpe™™ |1 0 &a
o [o ] . _ _.m .
= ¢, (K,Ku, -Q; ) e T 6K an ' e
.[m ,[m E ol X30l o @3l

At the same time, based on generalized Fourier integral theory,

B (1% = __/: YL (@i%gy) e T 1 an (H-32)

where Y (Q;Xso) is the quasi-Lagrangian time power spectrum. Thus

by comparison of Equations (H-31) and (H-32),

¥ (2,%5) = __fw ¢p (K, Ki; - &%) d K (8-33)

Notice should be taken that Equation (H-31) represents a relation-
ship between the quasi-Lagrangian time auto correlatton function -
and the Eulerian space-time power spectrum for stationary turbu-: ¢
lence with x-direction homogeneity, while Equation (H-33) relates.
the quasi-Lagrangian time power spectrum with the same Eulerian
space-time power spectrum. Both relations are based on finst-j.

order perturbation theory.

The true significance of Eduations.(H—31) and (H—33) can
be ascertained by applying them to certain situations involving
both nondispersive and dispersive media. First, in a nondispersive
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media Taylor's hypothesis holds and thus,
w = kb - . _ .. (H-34) ...

e =0 S _ L L ,.(ii-35)

For this case Equation (H-33) becomes
¥ L (tavior) (%30} ,[w g (ravior) K Ky - Xgq) dk

= _L ®E (ravior) Ki¥go) O(R) &K

S(R) L (D'E(TAYI.DR) (K;XSO) dK (H-36)

where ¢E (K’X30) is the Eulerian space power spectrum Equation
(H-36) indicates that the quasi-Lagrangian time spectrum based
on Taylor's hypothesis is simply a spike at = 0. A cdmbination
of Equations .(H-31) and (H-36) yields '
. ' - - ) )
B1 cravior) (T+%30) = ,[ §() .[w * & craviory % %) e T @@

00

= ,_/m ® g (ravior) (i %30) K

Notice should be taken that the RHS of.Equation (H-37) is inde-
pendent of 1. Thus the quasi-Lagrangian time auto correlation

(H-37>

function is independent of t and

By oraviory (U %30) = Er(maviory %so) (H-38)

Eqﬁatiog.(H—SS) combined with Equation'(HfZS) indicates that

Hy (ravior) %30) = < Vi (%zo) Vi (Ezp) >

o, (g (H-39)
1 :

118



Based on Equation (H-39) the quasi-Lagrangian time auto correlation
function (for the case of Taylor's Hypothesis), for the balloon
velocity component vi(t,Xso), equals the variance of the same
velocity component. The latter in turn equals the variance of the
xrcomponent of the wind velocity. These relations are based on

the first-order perturbation analysis with the assumption of a
perfectly responsive balloon (in the x-direction) with stationary
turbulence which is homogeneous in the x-direction. |

For the case of a dispersive media, Taylor's hypothesis
does not hold. Instead

w=1d, k+F.(k) (H-40)

or

Q - F (K) - (H-41)
The inverse_qf Equation (H-41) proves more useful and can be.

written
K=f () ' (H-42)

A combinatlon of Equatlons (H-33) and (H-42) yields

¥ 1 (o1spersive) $4i%30) = f ¢ & (prspERsTVE) (KoKW -%X54) dK

_L ® g (prspersTvE) (KiXg0) ¢ [f(K] &K

% prspErsTvE) LT (Di%g0] (H-43)

Thuslin:a dispersive media the quasi-Lagrangian time power spectrum
can be related to the corresponding Eulerian spatial power spectrum
if the function f (Q) is known. Furthermore, the quasi-Lagrangian
time auto correlation function can be related to the same Eulerian
spatial power spectrum by a conbination of Equations (H-32) and
(H-43) as follows:

H (1;%34) = _[m ®p(pispErsTVE) LT@)i%g0]e Mg (H-44)
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For d1spers1ve Rossby waves the phase velocity c is

given by the relatlon

c =i, - 8/k | | O (H-48)
By definition _ T S

- . e
and thus o

w=1, k- B/k o (E-a7)
or |

Q = 8/k ' (8-48)
Thus'for a Rossby wave, based on Equation (HQ42) and (H-48),

f rosspy) (%) = 8/% (H-49)
Then B

(H-50)

YL (rossBy) (% Xao) ® E('ROSSBY‘)(B/Q‘Xso)

The relation between ¢. (K., X,~) and K is known to be of
E(ROSSBY) i 730
the form

P .

® E(rossBy) (KiXge) = K 71 (H-51)
where

P1 <0 )
Therefore

v (R,X.0) = @ °1 (H-52)

- L(ROSSBY) ' 30 -

For dispersive gravity waves,

w= ﬁl k + /gk (H-53)
or

Q= + /gk (H-54)

Thus, based on Equation (H-42) and (H-54),

_ 2
f (GraviTY) (%) = @7/8 (H-55)
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In this case
. = 2 . .
Y1 (eravITy) (% ¥30) g (graviTy) (%/8:X30) (H-56)

The relation between'°ﬁE(GRAVITY) (K,Xso) and K is of:the form

Y P2
% cqraviTy) (KiXgp) = K (H-57)
‘where
Therefore
EICHERO. - 2P,
¥ 1 (craviTy) (R:%30) =

Q ' (H-58)

Rossby waves possess long wave lengths and thus small
wave numbers while gravity waves have relatively short wave
lengths and hence larger wave numbers. A plot of ¢E (K;,Xso)
for these two types of waves is given in Figure H-2. The
Qorresponding plot of YL (Q;Xso) is shown in Figure H-3.
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Lagrangian Time Power Spectra

Figure H-3.
for Rossby and Gravity Waves
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APPENDIX I

NOTES ON SPACE-TIME SPECTRUM ¢E (k, w; XSO)

The function ¢E (k, w; X30) represents the Eulerian
Space-time spectral density at altitude X30 of turbulent eddy
with wave number k and frequency w. If no relation between k
and 0w exist, the general variation of ¢ with k and w might be

pictured'as shown in Figure I-1.

¢E (k, 0; X30’

Figure I-1. General Eulerian Space-Time Power Spectrum

If, however, k and w are related according to Taylor's hypothesis,

w = ku1 (I-1)

¢E(TAYLOR), as a function of k and w, appears as shown in

Figure I-2.
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Z=Z &

(K,
E{TAYLOR}

N

e
/’//7:/// S SN SA1.0940

Figure I-2. Eulerian Space-~Time Power Spectrum According to
Taylor's Hypothesis

Notice should be taken that, with increasing ﬁl, the plane con-
taining ¢ZE(TAYLOR) (k, kﬁl; XBO) rotates CCW.

For the case of dispersive media,

w = kﬁl + F(k) (1-2)

For this case, ¢E as a function of k and w appears as shown in

Figure I-3.
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‘P (k, w; Xzg)

-~ T3, .
E(Dls/PERsWEi(k’_ iy + F(k); X30)

//'//i/////// SA1.0941

Figure I-3. Eulerian Space-Time Power Spectrum Ior
Dispersive Media '

The preceding figure represents the general concept of the spectral
density function for a dispersive media. Two specific examples

are useful. For a Rossby wave,

0 = Ky - £ ._ T St

Although Rossby waves are limited to relatively low frequencies.
and thus low wave numbers, it is beneficial to picture the
variation of ¢ E (ROSSBY) with k and w over a wide range of
values of k and y as shown in Figure I-4.
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¢E (k, w; X3D)

- (k, kiy — B/K; Xaq)
e (rossev) iy = B /% X30)_

k<o) ~

~ -~
P
_}F%////?
//71;//i;;;://]<//il: .’QL
¢ (k, Ky ~ B /k; Xgq)

€ (ROSSBY)
(k>o0)

J 1 1

Vs 7 77 71T FS

w=kiiy ~ Bk SAI0842

Figure I-4. Eulerian Space-Time Power Spectrum
for Rossby Waves

Notice should be taken in the preceding figure that the heavily

shaded portion of the plots of ¢ E (ROSSBY) (k, kul - B/k; XBO)
represents the regions where Rossby waves would most likely be

present.

For gravity waves

w=1u k + /gk (I-4)

Gravity waves normally occur at relatively high values of k, but
as before it is beneficial to plot the curve over a range of values

cP both k and w. The result is as shown in Figure I-5.
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Figure I-5. Eulerian Space-Time Power Spectrum
for Gravity Waves

As before the more heavily shaded portions of the plot indicates

the part of the spectrum in which gravity waves most likely will
occur.
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APPENDIX J

Notes on Space-Time Spectrum wL (K, Q}.XSO)

It is desirable to introduce a two-dimensional space- /:.
time spectrum'wL (K, Q; XSO) which satisfies the relation

¥ (2 Xgq) = JC v, (K, @: Xg5) d& | f '(Jf;).

The function wL (K,-Q; X30) is the counterpart of ¢E (k, w; x30)'
Each of the five figures given in Appendix I could be redrawn to
represent wL (K, &; XBO) as a function of K, Q. For the sake

of brevity only the three specific cases, illustrated by Figures
I-2, I-4 and I-5, will be developed.

For the case involving Taylor's hypothesis,
Q=0 (J-2)

wL as a function of K and @ is shown in Figure J-1.

¥L(TaYLOR)(K. 0: X30) RS 9:/"30)
,/X’/7%// A
TR T T <
///,/f;//////
L L e .
= L L L L L
- - S R
- S L L~
e
,///://i////l/// ,//, g

-— Pad
//, d - -7 ‘SA1-0044

Figure J-1. Lagrangian Space-Time Power Spectrum
According to Taylor's Hypothesis
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. A comparison of Figures I-2 and J-1 reveals that as
31 approaches zZero, w'L(TAYLOR) (K, -§; X30) approaches ¢'E(TAYLOR)
(k, w; X34).

For the case involving the Rossby wave,

2 = B/K (J-3)

or

K = 8/Q ' _ (J-4)

r

The variation of ‘pL(RDSSBY) (X, qQ; XBO) with K and @ is shown in
Figure J-2. " As before the more heavily shaded regions indicate

¥y (rossaY)¥ €& & Xa0)

Al[/L (K, & ; X390

SA1-0946

Figure J-2. Lagrangian Space-Time Power Spectrum

for Rossby Waves




that portion of the spectrum where Rossby waves are more 11ke1y
to occur. A comparison of Flgures I-4 and J-2 1nd1cates that as
.hi approaches zero, u‘L(ROSSBY),(K’ 79; 0) approaches d’E(ROSSBY)
(k, w; X30) ' - C

In addition, inspection of the shaded portion of Figure J-2
reveals that in that portion of the spectrum where Rossby waves
ocehr q’L(ROSSBY) increases with increasing @ while, as shown
in Figure I- -4, ¢IE(ROSSBY) decreases with increasing k. This
provides a slightly better understanding of the relatlonshlp

and which was originally presented

between ¢ p pogspy ) ‘L (ROSSBY )

in Appendix H.
For the case involving gravity waves,

and
2 -
9]
K = —_— -
| = (J-6)

The variation of w'L(GRAVITY) (k{ 2; X30) with K and Q is“shown

in Figure J-3. o -

The more heavily shaded portion of the spectrum represents the
region in which gravity waves normally occur. Comparlson of

Figures I-5 and J-3 reveals, that as u1 approaches zero w L(GRAVITY)
(K - Q; X30) approaches ¢ E(GRAVITY) (k, w; X30)- Furthe;more,
although difficult to determine quantitatively from Figure I—5_and
J-3, it is possible to observe qualitatively that wL(GRAVITY3;
decreases more rapidly with increasing @ than ¢E(GRAVITY) decreases

with increasing k.
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Figure J-3. Lagrangian Space-Time Power Spectrum
for Gravity Waves
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APPENDIX K-

Source Listing for BALLOON Program

Balloon is written in FORTRAN IV for the Univac 1108
Computér._ The listing which follows represents the current

form of the program.

COMMUN/CONS/PI.DsSIGMALAP M, VoL
*MUREF s TEMREF » TEMPO ., TEMLAP+ X3P )R.GSRTL»G(3) 3P0,X33
CQNMON/TERHS/FDRAu(3).FAPI(S).FAP2(3).FBUUY(3).FbASS(3).
*MAsNUJMUJRHO s TEMP ,x (3) .FACTOR ,RE
COMMUN/VELOC/ZU(3),vI(d) UMAG,VMAG MAGDIF
COMMON/INTL/K(3)2THETA(I3) yOMEGA VB (3) A ,B,C
DIMENSION FU(3),Fyv(3)evDU(3)
DIMENSION XD(5)XiN(7)
DIMENSION WRA(SO0e11)sWRRI(S0,4)sWRC(50,17)
DImEnSION BCDX(12),RCDYI(12),BCDY2(12),BCDY3(12) +FLDYI(12),FLDYZ(
112)FLDY3(12)
DIMENSION PTU(SRO)sPX(50n)PY(S0D),PZ(500),PYI(500):sPY2(500),PYI(5C
10),PZ1(500),P22(5Cn)PZ3(500)
EQUIVALEWCE(K (1) oK) s k(2)4K2) o (KI3)sK3)s (THETA(L1) THETAA) 3 (THETA(
12) yTHETAB) s (THETA(3) s THETAC)
REAL MylbL,k
REAL MAsNUSMU,MUREF
REAL MAGOIF
NAMELIST/INPUT/GrXK oKy THETALUBsV,AOMEGA,SIGMA.N MUREF »TEMREF,T,
*TLIMIDELTATWTEMPOPOSTEMLAP R X300 '
PI=3¢141592654
READ(52700L2) NN
READ(5,700G1) BCDX,rCDY1..BCOY2,8CUY3 FLOY! ;FLDY?>,FLLY3
READ(5+100) Gex K, THETA ,UB,V
KEAD(S521CG) AJUMEGA SIGMA D MUREF JTEMREF »ToTLIMUELTAT,
eTEMPO PO, TEMLAP ,R.Xx30
10C FURMAT(B8E1043)
7001 FORMAT(J12A6,8X)
7C02 FORMAT(]12)
D0 20 I=1,3
FBASS(1l) = D«
20 vV(l) = UB(l)
DGTORLE=P]| /180,
THETALl=THETAA#*;GTOURD
THETAZ=THETAB*GTOGRD
THETA3=THETAC®DGTORD
IF(THETARA L EQeCAND . THETA2.EQe") 6O TO |
Ca~A®K1®o (SIN(THETAL)=COS(THETAL)STANI(THETAZ2))/K3I/Z(SIN(THETA3)
® =COS(THETA3)eTAN(THETAZ2))
Bu=A®K s (SIN(THETAY)=COS(THETAL)®*TANITHETA3) ) /k2/(SINC(THETAZ2)
* «COS(THETA2)#TAN(THETA3))
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Go TO 2

| Ba=ASKle®,5/K2
CamA®K]ee5/K3

2 CONTINUE
WRITE(6,9004) aeBsc

9004 FORMAT(///18X,1P3E12e4)
UCON = UB(1)/A
Do 1501 Li=1,.NNN
READ(5,101) XD(2),x n(S).BCDX(ll}.HCnXIIZ).ToTIIMoDELTAT IpT, !Ds
101 FORMATI(2E10e3410K,2A648X33F58e0,215)

TRF = 7
TRLIM = TLIM
K{1) = XD(2)/0D
K(2) s K(1)
K(3) = K(1)
UMEGA = xD(5)ei/D
ETA = 1.0HE=3C
K1) = AMAXI(K{(1),.ETA)

10 CONTINUE
CALL GEOMET
CALL PROPTY(X)
GR = =G(3)
GAM = GR/R/4+184E+7
Xotid = {i2eeNul/ (asD) .
XD(3) = 26666647°GRODODe(GAM=TEMLAP)/ (AsASTEMPN)
XD(4) = YCON
WRITE(6,9015) ACDX(11),BCOX(12) ., (x0(L2),L23145)
WRITE(S,INPUT) : ‘

9015 FORMAT(1H1325X,'TEST CASE*2A6//' DIMENSIONLESS GROUPS'//' w7='ipEl

124/ N8m'EL1244/ * NOROE1204/% NIUmtELZJH/7® NUIBYELZWH)
CALL IDENT (8,41)
DO 1002 LS = 1,1Ds
I = p
IDXx = O

5 CALL INTEG(T, V. X ,DELTAT,1DT)
DO 200 I = 1,3
Full) = u(l)/A
Fv(l) = y(Il)/A
VOU(I) = v(I)/u(l)

200 CONTINUE -

AKT = Aek(l)eT ' ‘
Dz = x{3) = x3an
10 = [0 +« |
Iox = Ipx + 1
PX{IDX) = X(1)
PY(IDX) = X(2)
Pzt10Xx) = Dz

Pyl(iovXx) = FU(1)
PY2(i0X) = FU(2)
PY3(IDA) = FU(3)
PZ1(LlUX) = FVI(1)
PZ2(IDX) = Fviz)
P23(1DX) = FV(3)

WRA(ID,1) = T
WRB(ID,1) = T
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WRC(IDy1) = T

WRA(ID»2) = AKT
WRB(ID»2) = AKT
WRC(IDL2) = AKT

PTLIDX) = AKT
WRB(IDy3) = X(1)
WRB(ID,4) = X(2)
WRB(IDy5) = DZ
WRB(IDy6) = RE
DO 30O Is},3

WRA(IDI+2)
WRA(IUsI+5)
WRA(IDsI+8)
WRC(ID.s1+2)
WRC(IDyI*5)
WRC(lO»1+8)

= FUlI)

s FV(])

= yDU(I])

= FDRAG(!)
= FAPL(T)
= FAP2¢1)

WRC(IDsI+11) = FBUoY(I)
WRC(IDsI#+14) = FBASSI(I])
300 CONTINUVE
IFLID = 5p) 305,302,302
302 CONTINUE
WRITE(6,9002) .
WKITE(6,90303) ((WRA(Tedysd=lell)sl=m1,50)
WRITE(S,900G8) . .
WRITE(S,9009) ((WRA(1,J)sdxl4b),1=1,50)
WRITE(6,9006)
WRITE(6,9007) ((WRC(1sJ)adaiel7)el=1,50)
9002 FORMAT(']l TIME SCaLED TIME
1SCALED BALLOON VELOCITIES
9003 FORMAT(1X,0PF8.241P10E11e3)
9008 FORMAT('1 TIME SCaALED TYIME X Y
1'77)
9009 FORMAT(1X,0PF842,1P5EL1143)
9006 FORMAT(*] TIME SCALED TIME
1 FAP1/FBASS
9007 FORMAT(1X0PFB.2+1P10E11e3/720%s1P6E1L143)

VELOCITY RATIOSt//)

FDRAG/FRUOY
FAp2v//)

SCcALED aATMOSPHfFRIC WIND

Lz

305

1002

lo = 0

CONTINUVE

IFtTelLTeTLIM) 60 TO 5

XL 3 A®K(1)®TRF

KR = A®*K{1)eTLIM

YB = 88

YT = 1le2 .

CALL QUIK3L(=1 XL XRsYB YT s1H+sBCOX ,BCOYl,=10x.PT,PY1)
CALL WUIKIL(C XL XR+YBYT1HOBCUXsaCOY)s=IDX,PTsPZ1)
Y& = =],5

YT = 15

CALL WUIK3L(=1.XLoXRoYB, YTolH+sACOX,BCOY2,=[Dx.PT,PY2)
CALL GUIK3L(O XL osXRoYBeYT,1HOBCUXBCDY2,~1DX,pTsPZ22)
CALL WUIKIL{=1.XLiXRoYBsYTslH+sBCOXBCLY3I»=]0X.,PT4PYI)
CALL QU[KJL(p.XLan.VB.YTQlHOoSCDXnBCDYSl'IDx.PTDPl3’
CALL WUIK3IVI=1,1HGBCDX FLDY2:=10X,PT»PY)

CALL QUIK3V(=1,1HO RCOXsFLOYI ~1UX,PTsP2)

IRF = T

TLIM = TLIM + TRLIM

CONTINUE
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CALL ENDJOB
T = G

X(l1) = 0,
X(2) = Q,
X(3) =x3p
V(1) = uB(l)

Vi2) = HHags 2
¥ iR VR Ve

V(3) = ya(3)
1001 CONTINUE

STOP

END

cunNItTrtue ACcer Iy ul _vy1_a2vnT._DEY
GUDNRYY I JIVE Aewil eV e FALIIUVIW I §Vwiam
D»

COMMON/CONS/PT ., s GMA AP oM, vog.
eMUREF 4 TEMREF , TEMPO.TEMLAP X30+sR+GSRTL»G(3)PO,X33
COMMON/TERMS/FORAG(A) ,FAPL(3) ,FAP2(1)+FBUOY(3) . FBASS(3),
SMANUSMURHOTEMP X (3) ,FACTOR

COMMON/VELOC/U(3)4v(3) ,UMAG,VMAGsMAGDIF

REAL Mol K

REAL MANUIMU,MUREF

REAL MAGDIF

REAL MEFF

DIMENSION VI(3)4X1¢3),0vDT(3)

CALL PROPTYI(XI)

CaLL BUOVYNT

CALL APARNT(Tyxlavl)

VMAGBSUWURT(VI(l)ee2,v](2)®e2+VI(3)ead)
UMAGRSQRT(U(1)ee2+4(2)e22+U(3)®e2)
SUM=(Q. ’
DO S I=1,3

5 SUMBSUM+(VI(I)=U(]))ee2
MAGDIF=SQRT(SUM)
CALL ORAG(VI)
BeFACTORCSQRT(DELTATS®S)
MEFFaM+MA
Do tu I=1,3
DvDT(l)-(FDRAG(l)+FAP!(!)+FAP2|!)tFnUOY(!)#FBA<S(l))/(NEFF+B)

13 CONTINVE

RE TURN
END
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DIMENSION XT(3),VIi(3) . .

THIS ROUTINE CALCULATE FORCES RFSULTING FROM APPAREN
COMMUN/CONS/Pl D ySIGMA AP M, VUL
SMUREF » TEMREF »
COMMON/TERMS/FORAGI3) 4FAPL(3), FAP2(3).Fsuox(;n.FBASS(al._
*MAJNUSMU,RHO TEMP . x(3) .,FACTOR '
COMMON/VELOC/U(3),Vv(3).UMAG,VMAG, HAGDIF
COMMON/DERV/PDUDX(3,3),PDUDT(3)

COMMUON/TIME/N

DIMENSION DUDTF (3)

REAL Myl oK

REAL MAJNUIMU,MUREF

REAL MAPMRS

REAL MAGOIF

MAPMRS=MA+MeRHU/SIGMA

X113 = X1(3)= X230

CALL POTFLU(T xI{1)yXT1(2),Xx13)

0o 10 I=}1,3

UDUDASDVAL (U841

DUDTF (I )=pDUDT(T)+uDUDX

FAPLI(1)=MAPMRSSDUDTF (1)

FAP2(1) = MAsDVAL(VIWU,.1)

CONTINUE

RETURN

END

Y] —nl(z r
]

Ma.CC
L

SUBROUTINE BUOYNT

COMMON/CONS/PI1 .,DsSIGMALAP M, VoL
SMUREF o TEMREF TEMPOWTEMLAP s X3NsRsGSRTLIG(3) sPDX3I)
COMMON/TERMS/Z/FORAGI3) FAPL(3) ,FAP2(3),FBUOY(3),FDASSL3),
*MA JNUMU,RHO 2 TEMP 4 x(3) ,FACTOR

REAL Mol +K

REAL MA NU MU

REAL MROS]IG
MROSIG=EMe (]l 4~RHO/SIGMA)
bo 10 I=1,3
FBUOY(]l)=Gg(l)eMROS |G
RETURN

END
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SUBRUUTINE DRAGIVT)

COMMON/CONS/P1,.DsSTIGMA AP ,M,
TEMPO JTEMLAR 4 x30sR,GSRTLGE3),P0sX33
COMMON/TERMS/FURAG(3)+FAPL1(3),FAP2(2),,FBUQY(3),FBASS(3),
SMANUSMUSRHOSTEMP . x(3) .FACTORWRE
COMMON/VELOC/UI3) yv(3) UMAG.VMAG,MAGDIF

#MUREF , TEMREF,

DIMENSION RTABL(8),.,REN(8)

NIMOCNCSTIOM UT 2
WATIL'VSEaUIN ¥ 3 377

REAL Myl oK _
REAL MAZNUsMU,MUREF
REAL MAGOIF

DATA RTABL/7e74066.502923,361354931¢59eN95311=.693147,
Qi]023787.-0544727/.NREN/B/.EPS/.OI/3REN/'4060G7.'2.3026,00o

0243026046052 06e97782:9.21034115129/

RE = MAGDIFen/NU
REZ = RE ¢ 1e30E=JIn
CL ® 244/REZ + Q450
Vii=v](1)

Vig=sviizi

Vidsv]I(])
HALFROS,5eRHO
CDAPMD=CDeAPOMAGDIF
HACO=HALFRO*CDAPMD
Do 10U I=1,3
FORAGUII=HACDs (U(I)Y=VI(TI))
CuNTINUE

RETURN

EnD

FUNCTJION DVAL(&,Z,41)

COMMON/DERV/PDUDX(3,3).PDUDTI(3)

DIMENSION w(3),2(3)
DVALS=Q.
Do 10 J=3,3

OVAL=OVAL+(W(J)=Z(J))sPDUDX(],u)

RETURN
EnND
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SUBROUT!NE GEOMET

TS ROUTINE CALCULATES TIME lNDtPENDENT GEOMETRIC VALUES-

COMMON/CONS/P] .DsSTGMALAP M, - VOLI

®MUREF » TEMREF
REAL MsL s K s MUREF
VOL=Pl®Dee3/b.
M=sVOLeSIGMA
APBP]eD882/440

IF(TEMLAP) 10,2010

CONTINVE

TEMPO, 7ENLAP.X3noR.0GSRTLlG(3)_.P0.X-3-3 :

GSRTLSABS(G(3))/(R-TEHLAP)IQQIBQE+7

6o 10 30
CONTINUE

GSRTL=ABS(G(3))/{ReTEMPO )74 1B4EST

CONTINVE

RETURN
END

SUBROUTINE INTEG(T . VsX nELTAT,IDT)
DIMENSION X(3),VI(3),0V1(3).DV2(3),DVH(3),DV5(3),
eVI(3)sX1(3)4DVDT(3),0V3LI)

DIMENSION DX1(3)sDX2(3),DX3(3)sDX4(3)0XS13)sECI)gX(I)
COMMON/TIME/N :
DATA ACCUR/1 e/

00 2000 LiI=1,IpT

CALL ACCEL(T oV X OVDTsDFLTAT 10}

DO S I=1,3

OVI(I)SDELTATeOVDT(1)/23,

OX1(1)=DELYATsvV(I)/3

Vitl)ay(r)y+DVvi(l)

X1CI)=X(1)+0X1(1)

CALL ACCEL(T*DELTAT/3¢4V]IsX1+DOVDT DELTAT 3333333333}
Do 6 I=1,3

OV2(1)=DELTATepVDT(1)/3.

DX2(1)®SDELTATevI(]) /3,

VI(I)EV([)+e5eDVI(1)+e5eDV2(])
XIC(I)=X(1)+e50uXltI)*eSeDx2(1)

CAlLL ACCEL(T*DELTAT/3eeVIX1, DVBT.DELTAT.-3333333333)
DO 7 I=1,3

Dv3(l)SDELTAT#0VDT(1)/3,

OXI(I)=DELTATevVI(I) /30
VI(1)=V(1)+0s375%0v1(1)alel250DVI(])
XI(1)=mX(])+0e3750Dx1(1)+14125e0X3¢(])

CALL ACCEL(T+DELTAT/2¢,VI X1 ,0VOT ,DELTATs¢5)
DO 8 I=1,3

DVY4(I)=DELTAT#DVDT(1)/3,
DX4(1)=DELTATey1t1)/3,
VI(I)=V(1)+1e5e¢DVI(I)=4,5¢DVI(iI+b.0%DVHL]"
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8 XI(I)=X(I)+1e5#DX1(1)=4.56DX3(I)+san®DXU(I}
CALL ACCEL(T*+DELTAT.VI,.XI, DVDT.DhLTAT 1)
TEST=0.0
Do 9 1=1,3
DVS (1l )=DELTAT#pVDT(1)/3,

OxS(1)=DELTATavVI(]I)/3.
E(1)=0e20DVI(]1)me98DVI(1)+aBDVH(I)=eleDVS5(])
EX(I)®20e2eDX1 (1) =a0eDX3(T)+eB82UX4([)~elasDXS5(]1) -

9 TEST=AMAX|I(TEST ABS(E(I)) ABS(EX(]I)))
IFI(TESTSLTsACCUR) 0O TO 10 . - .
WRITE(6,1000) : .

100C FORMAT(1UX+138He®®*ACCURACY TEST FAILED IN INTEGRATION)
10 Do 1) 1=1,3
V(I)-v(l)¢.5-0v1(l)+2.-DV4(I)+.SQDVS(I)
11 X(I)mX(1)eeD®Dx1([)+2e0DX4(I)+e5%px5(])
TeT+DELTAT
20005 CONTINUE
RETURN
END

REAL FUNCTION MREF (TEMP ,MUREF ,TEMREF)
REAL MUREF

A=MUREF S (TEMP/TEMREF ) ®al eSS
B=1e505¢TEMREF

C=TEMP+4505#TEMREF

MREF=A®B/C

RETURN

END

SUDRUUTINE POTFLUIT«XaY 2D
COHMON/[NTL/KIoKZ.KSoTHETAl.THETAZ.THETAJ OMEGAa U VB, WB»A,B8,C

COMAON/DERV/DUDXsDVDX ,DWDX,DUDY,uvDY,DwDY,0UDZ, DVULLDWLZH0UODT,
sDVOTHOWDTY ' '
COMMON/VELOC/UsVrnw ,DUMY (6)
REAL L14L2+L3sK19K?,K3
XImKl#X+K2#Y+K38Z
XIMOMT=X]=OMEGA®T
COSI=COSIXIMOMT+THFTAL)
C0S2=COS(XIMOMT+THETAZ)
C0S53=2COS(XIMOMT+THETAZ)
UsUB+ASSINIXIMOMT+THETAL)
VaVa+BeSIN(XIMOMT+THETAZ)
WasWB+COSIN(XIMOMT+THETAJ)
DUDX=A®K1C0OS1
ODuDY=A®K2+C0S1
DyDzsA+KX3sCOS1t
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[aNaNalalal

DYDX=5%K14C0S2
DVOY=peK2eC0S2
PvOZ=BeK3eC0S2
DwioXx=sCeK1eCOS3
‘DWDY=C¥#K24C0S3
DWOZ=C®K3eCO0S3
PuDT==A®0OMEGA®COS!
PvuT==BeOMEGA®COS2
. DWDT==CeOMEGA®COS)
20 CONTINUE
' RETURN
END

SUBROUTINE PROPTY(XT)

THIS ROUTINE CalLCULATES TEMPERATUKE ANUD DENSITY FROM
TABULATED FUNCTIONS OF sLTITUDE (X(3) OR ALT), DYNAM]IC
VISCOSITY MU, AND KINEMATIC VISCOSITY NUJARE CaALCULATED.
PRESSURE = PC = DYNES/CM®s2

ODENSITY = RHO = GMS/(Cea)

DIMENSION XI(23)

COMMUN/CONS/Pl .DsSIGHA AP M, YUulbo
SMUREF s TEMREF » TEMPOLTEMLAP s X3D s R SRTLsG(A) 4POXII

COMMON/TERMS/FORAG(23) 4FAP1(3) ,FAP2(23),FRUOY(3) FBASS(3),

SMASNUSMURHOJTEMP X t3) ,FACTOR a :

REAL Mib sk

REAL MANU)MU,,MUREF

REAL MKEF

TEMPETEMPD~TEML AP (X1 (3)=X3R)

MUsKEF (TEMP s MUREF ., TEMREF)
1000 FORMAT (10X ¢SHTEMP= ,ElN.4)

200C FOKMAT(1O3Xs3HMUZH,E1De4)
: IF(TEMLAP) 1C,2041n
10 CONTINUE
PaPC® (TEMP/TEMPCO) eeGSRTL
GO TV 30
20 CONTINUE
P 3 POSEXPI=GSRTLe{X1{3)=~X30))
35 CONTINUE
RHO=P/(RSTEMP) /490 184E+7
NUsMU/RHO
MAaVOL®RMHQOe,5
160 FORMAT(//10Xs16HPROPTY VARIABLES)
200 FORMAT(IOXsSHTeMPe (EI1Q.4/10Xs3Nx1my1ElGe4/ 10X, uHAIO®sEIQYy
*Ll0X 4 3HMUR L EID 4/ 10X ,2HP = 4E1Qe4 /10X 6HGSRTLE,E 1N/
210X 3NNUB L E1Ge 4/ 10X s 3HMAS JEL1D44/ 80X ¢ 2HMB oEL1O0e4 /10K o 4HVOLT3EL00N/7)
RETURN
END
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APPENDIX L

Samples for Blocks #1, #2 & #3 Outputs

The sample outputs which follow correspond to Blocks #1,

#2 and #3 Outputs which are described in Section 4.2. These

outputs are for the most part labeled and thus are self-explana-

tory. Where three components of a vector are printed out, the

sequence always corresponds to the order X1y X9y Xg.

L.1 Block #1 Output (Sample)

1.0000+02 1.8000+02 1.C000+02

L.2 Block #2 Output (Sample) ‘
TEST CASETEST (1,1)

DIMENSIONLESS GROUPS

NT = 3+45914=U4
NS = B8e1681-04
N9s= 1¢7317=03
N1Os= 1.0000+01
Nll= 8e.l6681=03
SINPUT
[ = «000QJ000D0E+QC « 00203000 +NU, -e9806650NELD3
X = 2 UD0JDO0DE« D, «D0I0TGC0E+DD, «1100G2GUE+Q7
K = 2b6283)1538E=05, 062831538E-05, e462831538€E=05
THETA = «0U0D0QGOE«OD ., «12300D0CCE+D3, ¢ 24000C00CE+DI
us = e 1000000 CE+UY «00G0200JE+N0, «J0NIU20NE+Q0
v = o l00CUOCCE+0Y wOVO0OCNDGE+ODD, «D00DN0GLIGE+DD
A = ¢ 1000000DE+03
OMEGA = 0eb62831538E=02
SIGMA = +36149400€-03 °
¥ = «130C0000E+Q3
MUREF = «17080000E=023
TEMREF = 027315000E+03
T = ¢ J0000Q0GOE+JG
TLIM = ¢« 100C00JDE+0S
DELTAT = ¢ 2500000CE+0O1
TEMPA = e21830002E+03
PO = 0226 1900G0E+6
TEMLAP = «+000G0000E +30
R = e686000GGE- 1
= ¢« 1 1000000E+(G7

X30
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'L.3 Block #3 Output (Sample - next four pages)
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€1

TIME SCALED TIME

- 50.00
100.00
150.00
200000
250.00
3on.o0
350.00
400.00
450400
500.00
550.00
600.0N0
650.00
700.00
790400
800.00
850.00
909%.00
950.00
1000.00
1050.00
1100.00
1150.00
1200.00
1250.00
1300.00
1350.00
140n.00
1450.00
1500.00

. 185100

1600.00
165000
170000
1750+00

> 180000

185000
1900.00
1950.00
2000.00
2050.00
210000
218n.00
2200.00
2250.00
230000
2350.00
2400.00
2450400
2500.00

Jel¥2=-02
60283-02
Fe425=-02
1¢257=-01!
1s571=01
lebdS=01
2¢199=01
2¢513=01
2¢827=01
3el42=91
J3e456=01)
d.770=01!

- 4.084«0l

4e398=9l
“0712'01
5.027=01
5:341=01
5¢655=01
5¢969=01
6+283=-01
6:4597=01
691 1=01
7:226=p1
7+540-01
7.854=g}
Belb8~-p1
8e.482=p1
8e796=p1
9elll=01

. 9e425=01

- 9e¢739=01

1+005+00
1¢037+00

- 1e068+00

1.100+00

leldle00

Is162+00
lel94+00
1225400
1e257+00
1¢288+00
1319400
1¢351+00
1¢382+90
Ledi14+00
1e445+00
1e477+09
1+508+00
1¢539+00
1571400

SCALEV ATHOSPHERIC NINp

10003401

“beup7¢21}

lell*ul
1eQldepl
14018+31
l1ed21¢ul

1e025¢+01

1eQe?+D1
legd2+gl
1eQ36¢+01
1+043%01
lLeU44*01L
leg48¢+01
LeuS52+01
1eQb4+01}
1e060%U1
1064401
1e068+yl
1e071¢C1
1e075+01)
le078+01
teg8lenl
1eQ85+01
1.087+01
1¢090¢0¢
1e0924+01
leaQ?4+01
1+096%ul
1:097+01
1:098+01
1e099+01
1eluC*0l
1+100+01
1elyo*0}
L+190+01
1e099%+01
1eg?9+01
1«098+01
14097+01
1¢095%01
LeQo4+01
1e092¢01
1eQ?0%01
leQd8+0l
LegBé6*ul
leQ&4+Q1}
1.082+01
1e080¢01
1.078+01
1e076¢5)

6.087-31
6437001
beb45~2

6e9J4~C1
74157201
74435291
Tebh49=01
7e839=2)
8.124-31
B8e354-01
8e574-C1
8.790=01
8.994-31
9e185=01
9436201
94521=01
Feb661-01
9.780=C1
9.874-21
Pe944=31
9:986-31
1.000+0>
998531
9.940-01
Pe86ce]1
Fe760=01
F627-01

Felg7=01.
9e280=01"

06901
84834-71
8¢579-01
843050t
BeGlu=0l
74737=21
7.387=01
7eCS4=01
6.713=C1
635501
5.990=21
5¢613=31
50222=31
4483831
Yed468-91
40109=31
3e759~31
Jel222
3.097=C1
2.784=21
2e487-01

9.262=01
Feb64=01
9.7459=01
9.821=01
9.882=-r1
9.931=01
9.968=01
?.991=01
1.030+00
9.993-01
9.969=01
9.925=01
9.861=01
F.774=01
?.b63anl
9.527-31
9.366=~01
9.175=01
8.,957=0t
8.,710=01
8.434=01
8.135=01
7.808=-01
7.455=01
7.080=01
6eb6B3=]
6e268=011
‘84,837-01
5.392=01
4,937=01
4.472=01
4.,002-01
3.528=01
3.052=01
2.575=01
2.100=-01
1.628=01
1.158=01
6.9146=02
2.279=-02
=2,354=02
=4.998=02
~1.142=0n1
=1.55%6=01
~1,943=0D1
=2.319=01
“2,669=C1t
=2,999=01
=3.308=-01
=3.598=01

‘SCALED BALLOUN velOCITIE>

" 1e004+91
le007¢u1
La0tieui
le014+01
1.018¢u1
1.021+p1
1.025+01
l.g29+p1
le032+y1
leDb4+()
lepua+ut
le044+01
lep48+p1
l.052¢01
ls056+51
Legs0+a1
lepb4+ul
Le068+01
1.071¢y)
1.075+1
leD78+31
lepB82+91
LeDB5+D1
lepB87+y1
1.090+0t
1«092+01
1e094+yl
le96+01)
leQ97+pt
le098+01
leq99+31
Le100¢01
l+100+yt
le103401
Le100+01
1.099+01
1e099+01
Le0984+91
1.097+01
le095+01
1094+
le092+01
le.090+01
legB8+)
12086401
leQB85+01
1083491
1081l
1.07%+01

- 1eD77401

Se924=01
693R9=0}
bepel=01
6091904
7¢172=01
Ted19=U1
Tesa2=01
Te9n2=G1
Belie=01
8+345=01
8e5n7=01
8e8n1=0L1
?.0n3~01
9el194=C1
Fe3469-01
$e528=~U1
Fean7=01
9e7a4~-01})
Fe876=01)
Fe94b6=01
Fe9r7=01
1+000*00
Fe9R4=01
9+937=0}
9e861=01
Fe756=31
9eb22"01
Fe4aa~ul
9¢27201
®e0a0=01
Beg25*0G1
Be549~y1
B8e294~y1

8eQnl=01"

70694~01
7¢372~01)
7¢039=4l
beb94=41
6+339=01
Se973=01
54595=01
5¢273=01
Geg48=01
He4nr4=0]
4¢127=01
e779=01
3ea42~u)
3e118=01
2e8n7=01
2¢5n8=0])

S5e837=01
4¢319=01
Je476-01
e887=01
de440=01
2¢083=01
14789=01
le53d=01
l1edld=Q1
1ellY=01
Ye3db6=02
7¢638=02
SeP69=02
Yed29-02
2e693=02
leU44=p2
=6+¢300-03
=20336=02
=44070=02
=5.828=02
=7¢59%=02
~94367=02
=lslll=0l
=le281=01
=l sd44gl]
=1e9597=01

=le736=01 -

=]le85Y=01
=)leP83=01
=2s043=01
=2+097=01
=2.122=01
=2+115=01

=2.072=01 -

=1¢%290=01
~jeBo4=p1
=lebd¥=01
=] +45d=01
=lelS7=01
=7eb555=02
=-1e591=02

1¢837«02
=le¥2]=02
=3e577=02
a3 7i=902
=4,323=02
=teliy4=g2
=542)3=02
=5:¢547=02
=5e013=02

VELOCITY RaTj0S

1.000+00
1000400
1.000+00
1+.000+00
1030400
1+000+00
1.000+00
1+000+00
1+000+00
1.000+00
1.000+00
1.000+00
1+.000+00
1+.000+00
1+.000+00
1.000+00
1+000+00
1+000+Q0
1.000+00
1+.000+00
1.000+00
1«000+00
1.000+00
1.000+Q0
1+.000¢00
1.000+00
1.000+00
1.000+00
1+000+00
1.000+00
1.000+00
1.000+00
1.000+00
1+ 000+00
1.000+00
1+000+00
1+000+00
1.000+00
1.000+00
9:999=01
9999=01
1.000+00
1.000+00
1.000+00
1.000+00
1.000+00
1.000+00
1+000+00
1.000+00
1.000+00

9¢733+01
1.002+0Q0
1.00£4+00
1.002+00

- Le00Q2+00
1+002+00

1.002+00
1.002400
1.002+00
1.001+00
1.001+00
1.001+u0
1.001+00
1001200
1001400
1.001+00
1e001¢00
1.000+00
1.000+00
1.000+00
1.000+00
1+.000+00
Fe¢999=01
9.998-01
9499701
9.996=01}
Fe994~01
9:993=01
9¢992=01}
9+990-0)
9.989=y1
P+988=01

9e986e0]

9.984%01
?+983=01
9.981=y1
2497901
.977=01
9¢974%=01
9.972=01
P.96Y=01
7¢9906=01
1.002+00
1+004+00
1 +QUb+U0
1.005+00
1¢006+00
1.007+00
1007+00
1+008+00

6e104=0)
4e469=01

3:566-01.

2¢940=01
246901
2¢098=01
Le794=01
1+529=01}
le318=01)
le¢120=01
9:396=02
704696=02
be0BY4~02

He429=02"

24787=02

1.096=02
~be728=03
=2¢546=02
=feh44=02
=b6eb691=02
=3+007=02
=lel51=01
=1e423m01
=ls719-01
=2:040=01
=20389~01
=2¢770=01

=3e185=01-

=de4640=01
=4¢137=01
-4%+690-01
=5¢303=01
599601}
=6+789=01
~7¢725=01
=8¢873=01
=}+038+00
-1+259¢Q0
~]1e673%00
=3:316*00
6e760=01
~2¢625=01
1e682=01)
20298=01
1e987=01
le864=01
1e799=01
1+738=01
1e677=01
le615=01



TIME SCALED TIHME

S0.00
10000
1S0.00
20009
253400
300.00
35000
400.00
450.00
509000
§50.00
60000
450.00
70000
750.00
803.00
850.00
?00.00
95000
1000.00
1053.00
1100.00
1150.00
1200.00
12592.00
1300.00
1350.00
1400.00
1450.00
150000
1550.00
160000
1650.00
170300
1750.00
1800.00
185000
1909.00
1950400
2000-.Nn0
2059.0D
2100400
215600
2200.00
2250400
230000
2350.00
240000
2450.00
2500.00

Jeld2=02
be283~02
Fe425=~02
1e257=p1
1¢571=01l
led85=01
2+199=01
2¢513=01
2.827=01
3vif2=01
3e456=D1
3.770-01
4,084=01

"44398=01

4e712-01
5.027=01
S4341=01
54655=01
5¢969=01
4+.283=01
6¢597=01
6.711=01
7:2206=g1
7.540-01
74854=01
d,i68=01
8s982=-01
84796=01
9elll=-pl}
9.425~01
94739=01
1.005+00
1.037+00
1.068+00
1.100+00
lel3i*0C
1¢162+00
l¢194+00
14¢225+00
14257 +00
14288+00
1e319+G0
1351+00
led82+00
le414+00
1+945+00C
le477+00
1.508+00
1+539+00
1¢571+00

Seu9*o4
1e004+0S
leS0B+05
2¢015+05
2e523+05
3¢033+05
3e544+05
44058+05
44573+05
S¢090+05
5e629+05
60130%05
6e653+05
74173+05
7e7u5%05
Be234+05
84765+55
9¢298+05
9833405
1e037¢06
1.071*%06
le145+06
1+199+06
1e253+06
1e338+06
1e¢362+06
Le417+06
le472+06
le526%06
1e581+D6
10636+06
1e691+06
Le746+06
LeB831%06
le856+06
Le911+06
Le90606+06
2e021+06
2407b6*96
24131+06
2418506
24240406
26295+06
24349+06
24453%06
20458+06
24512+C0¢6
24506+06
Re620*06
2vb674+06

26372+53
Sel75+53
84734401
1e213+304
1560404
le?30+34
2.307+C4
2¢697+04
3.098+04
J«S1D¢04
3.9734+04
44369+04
4814404
5.269+04
5¢733+CH
6e205¢04
b.685+9¢4
7Te172404
7eb6345GH
84159+04
BobSH+0YG
9e¢157+04
F4657+04
1.816+05
140654035
lell4+35
le163405
1e210+05
14257+05
1.303+05
14344405
16391408
12433+C5
lel744835
1513435
1551405
1.587+35
1eb21405
lebd54405
1¢685+05
1e714408
14741405
1766405
1789405
1e¢B811¢35
1.830+05
1+848+05
leB6S+S
1e830+05
1893405
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3093403
5.580+02
7.514+03
9.097+03
l.042+04
l.155+04
1,252+04%
1,335+04
1.406+04
1.467404
1.518+04
1.560+04
1.574+04
1.620+04%
1.637+04
Ie647+04
1.648+04
l.640+04
1e625+04
1.400+04
1.5646+04
1.524+04
1e473+04
1.4913+04
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1.269+04
14185+04
1.096+04
?.,999+03
8.997+03
7.962+02
6.906+023
5.845+G3
4.798+02
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2.8164+03
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1.137+013
4.806+02
-2.281+C0
=2.429+02
=1.,885+02
=1.883+02
=3.372+02
=5.232+02
«T7.269+02
-9.544+02
~1.,205+03
=1.474+03
=14758+013
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le240+04
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2.0714+04
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2.446+04
2.5754+u%
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2e766%04
2,838+04
2:898+04
24947404
2.987+04
3e019+04
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3¢068+04
3.070+34
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3.028%34
2¢9984+94
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2e912+GH
2.855+04
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24300+04
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2,024%+04
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le516+34
1e319+24
1+105+0%
8.727+0)
6e 172403
34286403
2eb249+02
4953403
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4.007+03
5,221+03
64313403
7.326+03
HBe294+ 3
Ye222+90)
leD1)*04
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S50.00
100.00
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-200.00
-250.00
-300.00
_150.80
400,00
_450.00
. 500.00
$£50400.
-4600200
450400
- 300400
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1.885=01
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3.456=01
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645%7«01
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0000
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0.000
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0.00C0
=1a965¢C1
0.000
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Be«000C
=24027+01
0.000
=2.037+0)
G«.000
=2.033401
0+.00C
~2.018+0!
Q.000
=1e991¢01
G.000
=1e952+01
C.000
={,903+01
0.000
*le843101
0.000
=1s772+01
0.000
*leb92¢01
G.000
=le603+01
8.000

- *le506+01

0.0C0
=1e4Q0+C]

O.000
=}e289+01
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0.000
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~94275+00
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=8.034+400
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J.C0C
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0.00¢
wlel84+01
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=1¢303+01
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“1s313+C1
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*lel48+01
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0.0Co
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i+064400
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2.20p0¢00
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4+280+00
0.000
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leb65403
=1,972+03
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4,676+9)
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=7.316+03
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9.571+03
=9.,587+03
F.840+03
=9.852+03
1.006+04
-1.006+04
1.022+p4
=1.,022+0%
1.033+04
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=1.039+04
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“8,932+02
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Ge.000
*4.4%i0+01
C.000
“4.907+01
C.000
“Se38Y+01
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=7:047+01
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~83794¢00
=9:369+00
~9.794+00
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-;.032¢ol
=1+046¢01
=1.053+0!
=1053+01
=1.046+01
=1.033+0}
=1.0l5+01
~9.899+00
=9¢574¢00
=9.234+00
~8.819+00
=8+354+00
=7.842+00
=7.289¢00
~6¢699+00
“6.080+00
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~4,786+00
=4e129+00

=3¢477+00
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=be737+00
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=2.496+00
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=1¢251+00
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le225+00
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=1+¢458+00
~1+175%00
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1800.00
1850.00
1900400
1950.00
2000400
2050.0n0
2100.00
2150.00
2200400
2250.00
2300.00
2350.00
24p0.00
2450+.00

2500.00

8e796=21
Pelll=gl
9.425=01
9¢739=01
1+005+00
1:037+00
1.068+00
le100+00
1e131+00
lelé2+00
1el94+00
1.225+00
1+257+00
1.288+00
1¢319+00
1¢351+00
1¢382+00
1e414+09
1e445+00
Led77+00
1+508+02
1539+00Q

1e571+00

0000
=5¢588+0(5
C«00C0
=44423+C0
Ge0GO
=3e¢316+00
J.000
=2.289+00
04000
=]e3d57+00
0.030
=S5¢366=01
0+090
1le484=p1]
[tX:173Y]
6e991=01
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0.0u0
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=3.181¢00
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=3¢799+00
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0.000
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5.990005
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0.0C0
71.575+00C
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le205+02
=1.100+02
1.204+02
=1.745+p2
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~2,953+p2
1,344+02
=4.,310+02
4,649+02
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APPENDIX M

Initial Testing of Balloon Program

In general according to first-order theory, the equation

for a balloon in a stationary atmosphere can be written as

(m+ma,)dv3 5
— gt t 2a vg + N7x3 = Gy |v3 | vy + Fg (M-l)

In this equation, the vertical displacement from equilibrium is

x'3 (=x3'—x3n). The mass of the balloon is m, and the apparent mass
qf the dispI;ced fluid is m, . In general, for a spherical balloon
displaced a small distance from equilibrium, (m + ma)/m=3/2.

In Equation (M-1) o is the linear drag and G1 is the non-
linear contribution to the drag term based on the following approxi-
mation for drag coefficient

24
Cp = re * Cpy

(M-2)

where Cp is a constant and Re is the Reynolds number (Re =« |v3|)

In Equation (M-1) the term FB represents the Basset force

which arises in a transient flow at low Reynolds numbers.

The buoyancy term Nz has been reduced to its linear com-
ponent. Perturbation techniques used to evaluate the nonlinear
contributions show that the first-order term contributes a modifi-
cation of about 1 cm in 10 m to the amplitude of the oscillation
and a subharmonic term of similar amplitude. These nonlinear
contributions should be observed using a small time step and careful
analysis. The perturbation technique cannot be used to solve the
linear oscillator in general, as, the solution does not converge
due to secular terms which arise in solutions higher than first-
order. However, the technique seems applicable here to determine,
the order of magnitude of the nonlinear contribution since no

resonance phenomena are expected in the unforced system.
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In the first four tests respectivély the follbwing simplifications
were madé: : ' '

fl) (m + ma)/m = 1,' a = 0, Fg = 0, G1 =0
(2) (m + ma)/m =.1, o # 0, FB ='0,'JG1 =0
(3) (m+m)/m=3/2, a =0,F;=0,G =0
() (m+m)/m=1, a=0, Fg#0, G =0

For test case #lithe govefning equation is the same as that for a
parcel of air diSplaced from its equilibrium position in the absence
drag forces, Basset forces, apparent mass forces énd fluid accel-
eration forces. With these simplifications the governing equation
is

av
3 - .38 _g4 (M-3)

dt 8x3

where the terms hﬁve their usual meaning,

For the atmosphere, by means of the hydrostatic equation,

= .Y _ -
0= -3 T (M-4)

The atmospheric temperature is assumed to vary linearly with alti-
tude according to the relation.

T =T -y X} (M-5)

The temperature of the parcel is also assumed to vary linearly with
altitude according to the relation
= - ' —-
Tp TO Yp X3 (M-6)
As shown by Hess [181], based on the four preceding equations
combined with the ideal gas law, by first-order theory the oscilla-
tion of the air parcel can be predicted. The period of oscillation

- 2m : -
_ (M-7)

Y g/T, (v, -m

T

Normally Yp is assumed to be equal to the adiabatic lapse rate, Ps’
dand the resulting relation is '
™
Tg.v. ~ 7 2 (M-8)
: g/T, (Ig - v)

where the subscript B.V. refers to Brunt-Vaisidli.
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As pointed out by Angell and Pack {1311, if Yp is set ‘equal
to the constant density lapse rate, Tp, (instead of the adiabatic
lapse rate), the motion of the air parcel is the same as that of a-

constant volume balloon with a period of oscillation of

2T

TevB T = (M-9)
% v g/T, (rp -
Now ‘ .
r, = -.0341 °K/m - - (M-10)

Waill il A KAV Y S AaN v aaal

observed in the lower atmosphere. For the case of an isothermal

atmosphere,
27
T =
CVB
v g/To Fp
= 10.85 ¥ T0 (M-11)

Equation (M-11) closely agrees with the relation given by Lally [58].

Now for the test case #1, with an isothermal atmosphere,

v ; 0 (M—12)
and
T, = 218k (M-13)
the time period is |
T = 160.20 sec. (M-14)

CVB

The balloon displacement as a function of time, based on the computer
program is presented in Table (M-1). Inspection of this table
reveals a time period of 160 seconds, in close agreement with
Equation (M-12).

For the. case #2, the solution to Equation (M-1) is

—ot oos At (M-15)

Xg = Ae

where .
A = (82 - o5t - (M-16)
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TABLE M-1
Predicted Displacement History of Constant-Volume

Balloon in a Stationary Isothermal Atmosphere . (Test Case #1) *
. T Vertical | — T Vertical [ T
. [Time Step [Displacement | Time ; " Time Step | Displacement | - Time

N %3 Xg™ | & (sec) N | ®gTXad™ | ® (e

1 10. 0 _ 22 -10.39 ; 105
2 9.7 | 5 __ 23 - 814 10
3 . 8.93 10 , 24 - 5.69 15
4 7.76 15 25 - 3.13 : 20
5 6.12 20 26 - .57 25
6 4.13 25 . 27 + 1.39 30
7 ~1.86 30 28 4.15 35
8 - .59 35 29 6.13 40
9 - 3.14 40 30 7.77 : 45
10 - 5.69 45 31 8.99 - .. 150
11 - 8.14 50 ; - 32 _ 9.74 ' 55
12 -10.40 55 33 . 10.00 1 .60
13 -12.38 60 . 34 9.77 . 65
14 -14.00 65 - 35 9.05 70
15 -15.21 70 36 7.86 175
16 -15.95 . 75 37 6.25 80
17 -16.20 80 . 38 4.28 85
18 -15.95 85 . 39 - 2.02 90
19 -15.21 90 40 - .43 95
20 -14.00 95 41 - 2.98 200
21 -12.37 100

* Note: An error in the balloon density places the equilibrium

position at X5 - x - 3 m

30 =
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TABLE M-1 (con't)

Vertical

Vertical

Time Step | Displacement Time Time Step | Displacement Time
N Xg * x36m) t (sec) N Xq - XB%n) t (sec)
42 - 5.53 205 62 7.67 305
43 -'7.99 10 63 8.92 10
b4 -10.27 15 64 9.71 15
45 -12.27 20 65 10.00 20
46 -13.92 225 66 9.79 325
47 -15.15 30 67 9.09 30
48 -15.92 35 68 7.93 35
49 -16.21 40 69 6.34 40
50 -15.99 45 70 4.39 45
51 -15.27 250 71 2.16 350
52 -14.09 55 72 - .27 55
53 -12.49 60 73 - 2.82 60
54 -10.53 65 74 - 5.37 65
55 - 8.29 70 75 -7.83 70
56 - 5.85 275 76 -10.11 375
57 - 3.30 80 77 -12.12 80
58 - .74 85 78 -13.79 85
59 +1.73 90 79 -15.06 90
60 4.02 95 80 -15.87 95
61 6.02 300 81 400
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In the case studied, it was found that a? << N2. Consequently the
period
T
0
T = 5 5
Vi-rm,
> T
0
S _(M-17)
where '
To = 2T /N - (M-18)
T, = on jo (M-19)

= g
N (¥-20)
O o .

Hence, no change in this period was observed in the numerical
solution due to the dissipation term. However, the amplitude
damping in the numerical solution was found to correspond almost

5

exactly to the theoretical value.
In the Case #3 test, it was observed that the period T
given by the numerical solution corresponded closely to the first-

order solution which required

T =‘I_%_ T, . (M-21)

In the fourth test, the Basset force was non-zero,

t dv,/dt’
A v ot -t (M-22)
No attempt was made to obtain a solution to the integral equation.
The results of the test suggested that the Basset term behaves

like a term, of the form,
_ 2
F_ = 2a - b (M-23)

leading to an equation of the form

3 + 2a

2 2 v - -
It Vg + (N7 - b7) Xy = 0 (M-24)
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where the fundamental period was altered and the motion dampened.
The oscillation was regular over two periods leading to the sup-

position that

a, b # £ (xé) (M-25)

The value of "a" was of the same order of magnitude as the coeffi-

2”

cient of the integral. However, '"b was found to be an order of

magnitude greater;

2 2

b ~ 10 a ~ 10~ (M-26)

All of the preceding tests were conducted assuming an
isothermal atmosphere with the natural period given by the relation

= & _on
= To Vly (M-27)
o
instead of the more general relation
T =T & (M-28)
One additional test case (#5) was run to ensure that y = 0 was not
a special case. The period of this test case and the period obtain-

ed from the analytic solution of the equation were again nearly

identical.
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APPENDIX N

Results of Test.Runs #6 - #11

Based on the numerical solution produced by BALLOON;
the variation of the vertical component of velocity (for the wind
and the balloon) versus time is presented in Figures N-1 through
N-5 for test cases #6 - #11. i ‘
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APPENDIX O

Analysis of Numerical Results, Phase I (16 Original Runs)

For each of the sixteen runs which were initially performed
as part of Phase I a set of 6 position and velocity plots was
generated. These plots are not included in the report because of
the considerable bulk which they represent. They have been
collected and bound in a separate document [1] .for reference purposes.

For each of the sixteen runs special attention was given
to the length of the time interval over which the numerical inte-
gration was carried out. The time interval used along with the
time period of the associated flow field are presented in Figure O-1.

Figure 0-2 presents the linear period, the observed period
and the observed phase lag in the balloon velocity for the 16 runs.
The wind is given by:

u; = uy + A sin (ijj - wt + ei) (0-1)

Based on the assumption

x; = uit (0-2)

then the linear period is given by

_ 27
T Tk ﬁl - cC (0-3)
since ki = k and u, = uiail, and
c = & (0-4)

is the phase velocity. The observed periods are taken directly
from the data represented in Figures 5-4 through 5-6.

In Figure 0-2 values to the right of the principal
diagonal represent cases where ﬁl > ¢ and to the left where ﬁl < C.

Of course, on the diagonal,ﬁ1 = ¢, corresponding to Taylor's
hypothesis. Off the diagonal the equation for vertical motion

has the form
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K s
! | s
w 6.28 x 10°° 6.28 x 10°° 6.28 x 1072 6.28 x 10~
(sec-l)
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o o8 s ( 4000 ( 4000 600 80
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NOTE: Associated with each element in the array there are two numbers. The top number .
is the total time interval over which the particular case was integrated, and
the bottom number is the linear period due to the forcing function. Both time
periods have units of seconds.

Figure 0-1. Total Time Intervals and Linear Periods
for 16 Original Runs of Phase I
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NOTE: Associated with each element :in the array there are three numbers. " The upper
number is the theoretical (11near) period, the middle number is the observed -
period, and the lower number is the phase lag. Positive values of the phase-
lag indicate the balloon lags of the wind. All values are in seconds.

Figure 0-2. Periods of Oscillation and Phase Lag
for 16 Original Runs of Phase I



dv.

=2+ 20 vy + Nxg = Ccos (kjx; = ut + g5) + G . (0-5)

where the left-hand-side of the equation'ié the usual equation for
a damped oscillator. The first term on the righf;hand—side is the
forcing-fﬁnétion due to the pressure forces where C'is aSsuméd to
be a g¢nSfapt, and G is a function which is nonlinear in' dxg/dt.

If the function G is neglected, the balloon would be expected to
-oscillaté with the period of the forcing function given by Equation
T(O—B).‘ This expectation is borne out by the test case résults.

- The largeét'observed'déviation from the linear period ocCurs‘?long
the fourth column in Figure O-2 where the wave number is a maximum

and not necéssarily where 'u - cl approaches a minimum.

' Along thé‘diagonal of the experiment matrix, the cosine
of Equation (0-5) becomes a constant. For these cases the oscill-
ations should be expected to damp out as was observed in the All
case. In these'caSes, the balloon approximately matched the
flow aftef the initial transient motion was suppreSséd and the
forces balanced to hold it in this position. Thus for case
All’ the balloon was observed to reach ejuilibrium.about 120 'm
below its equilibrium level and, was observed to continue to
have a lateral motion. This lateral motion.persists for longer
time intervals, causing an ever-increasing lateral displacement
of the balloon. Therefore, one would observe no vertical motion

but a mean lateral motion.

The vertical displacement typically displayed two modes
of oscillation. The:short—period oscillation corresponded to. the
forced oscillation. The long-period oscillation resulted from the
initial conditions and was found to be damped as expected.

Figure O-3 shows case Agq where a Yery long total time
interval for numerical integration was employed. This case clearly

shows the damping in the transient mode of oscillation.

.
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Analysis of Numerical Results Phase I - Cruciform Runs

P.1 Cruciform C22

s A

[ - | _ - = en P o P V- 2 O P ~
rrireqg outr 1n vie vruciiormm b22

Twenty~four runs were ca
arrangement shown in Figure P-1. The values of k and w for each
run are given in Figuie P-1. For each run; a set of six position
and velocity histories are generated. These plots are not included
in the report , because of the considerable bulk which they represent. .
Such plots have been collected_ahd_bound in a separate document

[1] for reference pusposes.,

Analysis of the numerical results ofithe'247runs was
primarily concerned with comparing the first-order theoretical
time period with the observed value. The results of this compari-
son are presented in Figure P-2. 1In general, as the conditions
corresponding to A22 are approached along any one of the four
branches of the cruciform the first-order theoretical period
and the observed period agree less and less, with the observed
value increasing more rapidly than the first-order theoretical
value. This‘:indicates that fifst-order theory,'whidh'is linear,
is not sufficient to predict the balloon motion under conditions

where Taylor's hypothesis is (nearly) satisfied.

P.2 Cruciform C33

Twelve runs were carried in the Cruciform CéB arrangement
as shown in Figure P-3. The values of k and » for these runs are
presented in Figure P-3. As with the (','22 runs, a set of six
position and velocity histories was generated for each run. These
plots have been collected and bound in separate documents 1 for

reference purposes.

As in the case of the Cbz runs, analysis of the numerical
results of the twelve runs was primarily concerned with comparing
the first-order theoretical time peribd with the observed values.
Figure P-4 provides a summary of this comparison. Inspection
of this figure reveals the same trend as observed in Cruciform Gg.
Again, it would appear that first-order theory is not adequate to
predict the balloon motion under conditions where Taylor's hypothe-

sis is (nearly) satisfied.
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